Cho (ad + bc)2 = 4abcd . Chứng minh rằng a , b , c , d lập thành một tỷ lệ thức .
Ai làm được mình tick cho .
Cho (ad + bc)2 = 4abcd . Chứng minh rằng a , b , c , d lập thành một tỷ lệ thức .
Ai làm được mình tick cho .
\(\left(ad+bc\right)^2=4abcd\)
\(\Leftrightarrow a^2d^2+b^2c^2+2abcd-4abcd=0\)
\(\Leftrightarrow a^2d^2+b^2c^2-2abcd=0\)
=>\(\left(ad-bc\right)^2=0\)
=>ad=bc
=>a,b,c,d lập được tỉ lệ thức
Chứng minh rằng nếu: (ad+bc)2=4abcd
Thì các số a,b,c,d lập thành 1 tỷ lệ thức
Gíup dùm mk nhe
Chứng minh rằng : nếu (ad+bc)2 = 4abcd thì các số a, b, c, d lập thành một tỉ lệ thức
(ad+bc)2=4abcd
<=>(ad+bc)(ad+bc)-4abcd=0
<=>ad(ad+bc)+bc(ad+bc)-4abcd=0
<=>(ad2)+abcd+abcd+(bc)2-4abcd=0
<=>(ad)2+(bc)2+2abcd-(2abcd+2abcd)=0
<=>(ad)2+(bc)2+2abcd-2abcd-2abcd=0
<=>(ad)2+(bc)2-2abcd=0
<=>(ad-bc)2=0
<=>ad=bc
<=>a/b=c/d
vậy từ đẳng thức trên ta có a,b,c,d lập thành 1 TLT(đpcm)
chứng minh rằng nếu các số a , b , c , dthỏa mãn đẳng thức (ad + bc)^2 = 4abcd thì chúng lập thành một tỉ lệ thức
giúp mik nhé , ARIGATOU ^_^
(ad+bc)^2 = 4abcd
<=> a^2d^2+2abcd+b^2c^2 = 4abcd
<=> a^2d^2+2abcd+b^2c^2-4abcd=0
<=> a^2d^2-2abcd+b^2c^2 = 0
<=> (ad-bc)^2 = 0
<=> ad-bc = 0
<=> ad=bc
<=> a/b=c/d
=> ĐPCM
k mk nha
Chứng minh rằng : nếu ( ad + bc )2 = 4abcd thì các số a,b,c,d thì lập thành 1 tỉ lệ thức
Ta có: \(\left(ad+bc\right)^2=4abcd\)
\(\Leftrightarrow a^2d^2+2abcd+b^2c^2-4abcd=0\)
\(\Leftrightarrow a^2d^2-2abcd+b^2c^2=0\)
\(\Leftrightarrow\left(ad-bc\right)^2=0\)
\(\Leftrightarrow ad-bc=0\)
\(\Leftrightarrow ad=bc\)
hay \(\frac{a}{b}=\frac{c}{d}\)(đpcm)
Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) . Chứng minh rằng : \(\dfrac{a^2}{b^2}\) = \(\dfrac{c^2}{d^2}\) = \(\dfrac{ac}{bd}\)
Các bạn nhớ giải nhanh giúp mình nhé !
Ai làm nhanh nhất sẽ được tick 5 sao!!!
Áp dụng công thức tỉ lệ phân số ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)
CMR: Nếu 4 số a,b,c,d lập thành 1 tỉ lệ thức thì ta có: \(\left(ad+bc\right)^2=4abcd\)
Ngược lại nếu 4 số abcd thỏa mãn điều kiện: \(\left(ad+bc\right)^2=4abcd\)
thì chúng tạo thành 1 tỉ lệ thức
\(\Leftrightarrow\left(ad+bc\right)^2=4abcd\Leftrightarrow a^2d^2+b^2c^2+2abcd-4abcd=0\)\(\Leftrightarrow a^2d^2-2abcd+b^2d^2=0\)
\(\Leftrightarrow\left(ad-bc\right)^2=0\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)(với b và d khác 0)
Ta luôn dùng dấu tương đương nên không cần chứng minh ngược lại.
cho bốn số dương a, b, c, d. Biết rằng: b=a+c/2 và c=2bd/b+d
Chứng minh rằng bốn số này lập thành một tỉ lệ thức.
\(b=\frac{a+c}{2}\Rightarrow2b=a+c\)
\(c=\frac{2bd}{b+d}\Rightarrow c\left(b+d\right)=2bd\)
\(\Rightarrow c\left(b+d\right)=\left(a+c\right)d\Rightarrow cb+cd=ad+cd\Rightarrow ad=bc\)
Vậy 4 số a,b,c,d lập thành 1 tỉ lệ thức.
Cho tỷ lệ thức a/b = c/d. Chứng tỏ rằng ( a+ b) (c - d ) = ( a - b).( c+ d)
Cái này mình biết làm rồi nhưng hỏi xem mình làm đúng hay sai thôi
a/b=c/d
=>ad=bc
=>ac-ad=ac-bc
=>ac-ad+bc=ac-bc+ad
=>ac-ad+bc-bd=ac+ad-bc-bd
=>a(c-d)+b(c-d)=a(c+d)-b(c+d)
=>(a+b)(c-d)=(a-b)(c+d) (đpcm)