7 Tìm x , biết :
a) 2-9x^2 ; b) x^2+x+1/4
Bài 2: Tìm số nguyên x biết: (2 điểm)a) 4 . (x-2)- 2(x+3) = –28 b) 3x + 7 – 9x = –11
a) Ta có: \(4\left(x-2\right)-2\left(x+3\right)=-28\)
\(\Leftrightarrow4x-8-2x-6+28=0\)
\(\Leftrightarrow2x+14=0\)
\(\Leftrightarrow2x=-14\)
hay x=-7
Vậy: x=-7
b) Ta có: \(3x+7-9x=-11\)
\(\Leftrightarrow-6x+7+11=0\)
\(\Leftrightarrow-6x+18=0\)
\(\Leftrightarrow-6x=-18\)
hay x=3
Vậy: x=3
7 Tìm x , biết :
a) 2-9x^2 ; b) x^2+x+1/4
Đề bài này thiếu đấyy
Đề bài của nó là \(2-9x^2=0;
x^2+x+\frac{1}{4}\) Mới đúng nha bạnn
Tìm x,biết;
a) (3x+1)^2 -9x (x-1) =46
b)5x (x-3) = 7 (3-x)
a)
(3x+1)^2 -9x (x-1) =46
9x2+6x+1-9x2+9x = 46
15x+1=46
15x=45
x=3
b)
5x (x-3) = 7 (3-x)
5x ( x - 3 ) - 7 ( 3 - x ) = 0
5x ( x - 3 ) + 7 ( x - 3 ) = 0
(5x + 7 ) ( x - 3 ) = 0
5x+7=0 hoặc x-3 = 0
5x=-7 hoặc x=3
x= -7 / 5 hoặc x=3
Bài 2: Tìm x, biết:
a/ 12x(x – 5) – 3x(4x - 10) = 120
b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)
c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)
$ a/ 12x(x – 5) – 3x(4x - 10) = 120$
`<=>12x^2-60x-12x^2+30x=120`
`<=>-30x=120`
`<=>x=-4`
Vậy `x=-4`
$b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)$
`<=>9x^2+36x-15x^2-10x=112-6x^2-2x`
`<=>-6x^2+26x=112-6x^2-2x`
`<=>28x=112`
`<=>x=4`
Vậy `x=4`
$c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)$
`<=>3x-3x^2-15x^2-35x=154+45x-18x^2`
`<=>-32x-18x^2=154+45x-18x^2`
`<=>77x=-154`
`<=>x=-2`
Vậy `x=-2`
tìm x là số nguyên biết :
a) ( x-2).9x+1) = 0
b) ( x^2+7).(x^2+49)<0
c) (x^2-7).(x^2- 49) < 0
Bài 2 : Tìm số nguyên x biết :
a) 3x + 7 - 9x = -11
3x+7-9x=-11
(3x-9x)+7=-11
-6x+7=-11
-6x=-11-7
-6x=-18
x=-18:-6
x=3
Trả lời:
\(3x+7-9x=-11\)
\(\Leftrightarrow-6x=-18\)
\(\Leftrightarrow x=3\)(thỏa mãn\(x\inℤ\))
Vậy \(x=3\)
P/s: Mk làm tắt một số bước nhé!
Hok tốt!
Vuong Dong Yet
tìm x, biết:
a)x^2+3x=0
b)x.(x-7).(x+7)=0
c)x^3-9x=0
d)x^2-5x-6=0
a) x^2+3x=0
<=> x(x+3)=0
<=> x+3=0
---> X=-3
b)x.(x-7).(x+7)=0
<=>x.(x^2-7^2)=0
<=> X^2-7^2=0
==>x= 7 và x=-7
c) x^3-9x=0
<=> x(x^2-3^2)=0
<=> x^2-3^2=0
~~> x = 3 và x=-3
d) x^2-5x-6=0
<=> x^2-5x-5-1=0
<=> (x^2-1)-(5x-5) =0
<=> x(x-1) - 5(x-1)=0
<=> (x-1)(x-5)=0
~~> x-1 = 0 ~> x=1
~~> x-5=0 ~~> x=5
Vậy x=1 và x=5
Tìm x biết:
a) |9x -|x + 1||+|x| = 17
b) |x2 + x + 9| + |x2 + x + 7| = 16
b: \(\Leftrightarrow x^2+x+9+x^2+x+7=16\)
=>2x2+2x=0
=>2x(x+1)=0
=>x=0 hoặc x=-1
tìm x biết a,\(\sqrt{x^2-4x+4}=7\) b,\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\sqrt{9x+27}=6\)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-4x+4}=7\)
=>\(\sqrt{\left(x-2\right)^2}=7\)
=>|x-2|=7
=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)
b: ĐKXĐ: x>=-3
\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)
=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)
=>\(3\sqrt{x+3}=6\)
=>\(\sqrt{x+3}=2\)
=>x+3=4
=>x=1(nhận)
tìm x , biết
a, x ( x -1 ) - x2 + 2x = 5
b, 4x3 - 36x = 0
c, 2x2 - 2x = ( x - 1 )2
d, ( x - 7 ) ( x2- 9x + 20 ) ( x - 2 ) = 72
giúp emmm
a) \(\Leftrightarrow x^2-x-x^2+2x=5\)
\(\Leftrightarrow x=5\)
b) \(\Leftrightarrow4x\left(x^2-9\right)=0\)
\(\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0
\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy x = 0 , x = 3 hoặc x = -3
\(a,\Leftrightarrow x^2-x-x^2+2x=5\\ \Leftrightarrow x=5\\ b,\Leftrightarrow4x\left(x^2-9\right)=0\\ \Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\\ \Leftrightarrow\left(x^2-9x+17\right)^2-3^2-72=0\\ \Leftrightarrow\left(x^2-9x+17\right)^2-81=0\\ \Leftrightarrow\left(x^2-9x+17-9\right)\left(x^2-9x+17+9\right)=0\\ \Leftrightarrow\left(x-8\right)\left(x-1\right)\left(x^2-9x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=1\\\left(x-\dfrac{9}{2}\right)^2+\dfrac{23}{4}=0\left(vô.n_0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)