Giải pt:
x + 3/2y + z = 0,73
24x + 27y + 65z = 19,46
24x = 27y
giải phương trình : 24x+27y=4.5
24x+27y+64z=23,35
x+3/2.y+z=0,6
hỏi x=?;y=?;z=?
36^2-49^2
(a-b)^2-c^2
4x^2+12x+9
25x^2-20xy+4y^2
8x^6-27y^3
1/8x^3+8y^3
b: \(\left(a-b\right)^2-c^2=\left(a-b-c\right)\left(a-b+c\right)\)
c: \(4x^2+12x+9=\left(2x+3\right)^2\)
d: \(25x^2-20xy+4y^2=\left(5x-2y\right)^2\)
e: \(8x^6-27y^3=\left(2x^2-3y\right)\left(4x^2+6x^2y+9y^2\right)\)
Giải hệ phương trình:
\(\hept{\begin{cases}2+2x^2-2y^2+3xy-4x-3y=0\\\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\end{cases}}\)
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)
\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)
<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)
<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)
<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)
<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)
<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)
<=> \(x-3y-3=0\)
vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)
<=> x = 3y + 3
Thế vào phương trình trên ta có:
\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)
<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk
Vậy hệ vô nghiệm.
tính nhanh giá trị biểu thức sau
B=x^3+27y^3+9x^2y+27xy^2
mik cần giải ra rõ ràng
B=x^3+27y^3+9x^2y+27xy^2
=x^3+9x^2y+27xy^2+27y^3
=(x+3y)^3 ---> sử dụng hằng đẳng thức số 4 bạn nhé
Giải pt: 5[căn(3x-2)+căn(x+3)]=4x2-24x+35
Phân tích đa thức thành nhân tử:
a) 9x0 + 24x3y2 + 16y4
b) -y8 + 10y4x3 - 25x6
c) 8x3 + 36x2y + 54xy2 + 27y3
d) -y3 + 12y2x - 48yx2 + 64x3
e) 64x6y4 - 81x2y2
f) 64x6 - 27y6
b) \(-y^8+10y^4x^3-25x^6\)
\(=-\left(y^8-10y^4x^3+25x^6\right)\)
\(=-\left[\left(y^4\right)^2-2.y^4.5x^3+\left(5x^3\right)^2\right]\)
\(=-\left(y^4-5x^3\right)^2\)
c) \(8x^3+36x^2y+54xy^2+27y^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2+\left(3y\right)^3\)
\(=\left(2x+3y\right)^3\)
d) \(-y^3+12y^2x-48yx^2+64x^3\)
\(=-\left(y^3-12y^2x+48yx^2-64x^3\right)\)
\(=-\left[y^3-3.y^2.4x+3.y.\left(4x\right)^2-\left(4x\right)^3\right]\)
\(=-\left(y-4x\right)^3\)
e) \(64x^6y^4-81x^2y^2\)
\(=\left(8x^3y^2\right)^2-\left(9xy\right)^2\)
\(=\left(8x^3y^2-9xy\right)\left(8x^3y^2+9xy\right)\)
f) \(64x^6-27y^6\)
\(=\left(4x^2\right)^3-\left(3y^2\right)^3\)
\(=\left(4x^2-3y^2\right)\left[\left(4x^2\right)^2+4x^2.3y^2+\left(3y^2\right)^2\right]\)
\(=\left(4x^2-3y^2\right)\left(16x^4+12x^2y^2+9x^4\right)\)
giải pt :
x3-x2-24x+45=0
Tìm nghiệm nguyên dương của pt
x2(y2-3)-2y2(x-1)+6x=7
b.Tìm nghiệm nguyên dương của pt
xy2+2xy-27y+x=0
x2(y2-3) - 2y2(x-1) + 6x =7
(xy)2 -3x2 - 2y2x +2y2 +6x=7
x2y2 -2.xy2+y2 -3(x2 -2x+1)+y2 =4
y2(x2-2x+1) -3(x2-2x+1) +y2-3=1
(y2-3)(x2-2x+1+1)=1
(y2-3)(x2-2x+2)=1
còn lại bn tự làm nha!
chúc bạn làm bài tốt!