Cho tam giác ABC vuông tại A , đường cao AH , có AC= 225 , BH= 64 , Tính BC, BA , AH và AC
Cho tam giác ABC vuông tại A , đường cao AH , có AC= 225 , BH= 64 , Tính BC, BA , AH và AC
Cho tam giác ABC vuông tại A , đường cao AH. Cho BH = 225 và CH = 64. Cạnh AC bằng bao nhiêu?
Áp dụng hệ thức lượng trong tam giác vuông:
`AH^2=BH.CH`
`<=>AH^2=225.64`
`<=>AH=120`
Áp dụng định lí Pytago:
`AC^2=AH^2+CH^2`
`<=>AC^2=120^2+64^2`
`<=>AC=136`
Vậy `AC=136`.
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
1. Cho tam giác ABC vuông tại A(AB<AC) có đường cao AH. Biết BC = 25cm, AH = 12cm. Tính AB, AC, BH, CH
2. Cho tam giác ABC vuồng tại A, đường cao AH. Biết AB = 15cm, HC = 16cm. Tính AC, BC, AH, BH
1) a. cho tam giác ABC vuong tại A . AB = 7 , AC =9 . Đường cao AH . TÍNH BC và AH
b. cho tam giác ABC vuông tại A .AB = AC. Đường cao AH . BH = CH. AH =5 . Tính AB ,AC ,BH ,CH
VẼ HÌNH HƠI XẤU THÔNG CẢM NHA
áp dụng hệ thức lượng trong tam giác vuông ABC ta có \(AB\cdot AC=AH\cdot BC\) \(\Rightarrow AH\cdot BC=63\) (1)
áp dụng đl pitagovao tam giác vuông ABC ta có \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{130}\)
thay vao (1) ta co \(AH\cdot BC=63\Rightarrow AH=\frac{63}{\sqrt{130}}\)
Đề 1:
Cho tam giác ABC vuông tại A có AB = 30cm, đường cao AH = 24cm.
a) Tính BH, BC, AC.
b) Đường thẳng vuông góc với AB tại B cắt tia AH tại D. Tính BD
Đề 2:
Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 15cm, BH = 9cm.
a) Tính AC, BC, và đường cao AH.
b) Gọi M là trung điểm của BC, tính diện tích của tam giác AHM.
Đề 1:
a: Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay HB=18(cm)
Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(AC^2=AH^2+HC^2\)
nên AC=40(cm)
b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)
Do đó: ΔAHC\(\sim\)ΔDHB
Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)
hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6 cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6 a) tính độ dài AH, AB, AC b) Gọi M là trung điểm của AC. Tính số đo góc AMB ( làm tròn đến độ)
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH và AH =12cm, BC=25cm
tính BH,CH,AB,AC
Đặt BH=x; CH=y(x<y)
Theo đề, ta có:
x+y=25 và xy=12^2=144
=>x,y là các nghiệm của phương trình:
a^2-25a+144=0
=>a=9; a=16
=>BH=9cm; CH=16cm
AH=căn 9*16=12cm
AB=căn 9*25=15cm
AC=căn 16*25=20cm
Cho tam giác vuông ABC tại A, đường cao AH. Cho BH = 225 và CH = 64. Đường cao AH bằng?
Áp dụng hệ thức lượng trong tam giác vuông:
\(AH^2=BH.CH\)
⇔ \(AH^2=225.64\)
⇔ \(AH^2=14400\Rightarrow AH=120\)
Vậy đường cao AH = 120 ( cm )
Nếu đúng tick mik nha. Chúc bạn lễ Quốc Khánh vui vẻ
Áp dụng hệ thức liên quan tới đường cao vào △vuông ABC ta được
\(AH^2=HB.HC\Rightarrow AH=\sqrt{HB.HC}=\sqrt{225.64}=120\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\)
hay AH=120(cm)