a) rút gon R = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)( đã rút gọn)
b. so sánh R vs 3
c. tìm gtnn, gtln của R
Cho biểu thức M = \(\left(\dfrac{2x+3\sqrt{x}}{x\sqrt{x}+1}+\dfrac{1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
a, Rút gọn biểu thức
b, So sánh M và 1
c, Tìm x ∈ R để M có giá trị là số nguyên
a) \(M=\left(\dfrac{2x+3\sqrt{x}}{x\sqrt{x}+1}+\dfrac{1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\left(x>0\right)\)
\(=\left(\dfrac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2x+3\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+4}{\sqrt{x}+1}\)
b) Ta có: \(\sqrt{x}+4>\sqrt{x}+1\Rightarrow\dfrac{\sqrt{x}+4}{\sqrt{x}+1}>1\)
c) \(\dfrac{\sqrt{x}+4}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)
Ta có: \(\left\{{}\begin{matrix}3>0\\\sqrt{x}+1>0\end{matrix}\right.\Rightarrow1+\dfrac{3}{\sqrt{x}+1}>1\Rightarrow M>1\)
Lại có: \(\sqrt{x}+1>1\left(x>0\right)\Rightarrow\dfrac{3}{\sqrt{x}+1}< 3\Rightarrow1+\dfrac{3}{\sqrt{x}+1}< 4\Rightarrow M< 4\)
\(\Rightarrow1< M< 4\Rightarrow M\in\left\{2;3\right\}\)
\(M=2\Rightarrow1+\dfrac{3}{\sqrt{x}+1}=2\Rightarrow\dfrac{3}{\sqrt{x}+1}=1\Rightarrow\sqrt{x}+1=3\)
\(\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(M=3\Rightarrow1+\dfrac{3}{\sqrt{x}+1}=3\Rightarrow\dfrac{3}{\sqrt{x}+1}=2\Rightarrow2\sqrt{x}+2=3\)
\(\Rightarrow2\sqrt{x}=1\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
B = (sqrt(x + 1))/(sqrt(x) + 2) A = (sqrt(x) - 3)/(sqrt(x) + 2) + (sqrt(x))/(sqrt(x) - 2) - (6 + sqrt(x))/(x - 4) và với x>0, x ne4 a) Tính giá trị của biểu thức B tại x = 9 b) Rút gọn biểu thức A . c) Cho P = A/R So sánh P với 2.
a: Sửa đề: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Khi x=9 thì \(B=\dfrac{\sqrt{9}+1}{\sqrt{9}+2}\)
\(=\dfrac{3+1}{3+2}=\dfrac{4}{5}\)
b: \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{6+\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+6}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+x+2\sqrt{x}-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}+2}\)
c: P=A/B
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
\(P-2=\dfrac{2\sqrt{x}}{\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-2\sqrt{x}-2}{\sqrt{x}+1}\)
\(=\dfrac{-2}{\sqrt{x}+1}< 0\)
=>P<2
R=\(1:\left(\frac{x^2+2}{x^3-1} +\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
a, rút gọn R
b, so sánh R với 3
c, GTNN của R
d, tìm x thuộc Z để R >4
ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x^2+x+1\ne0\end{cases}}\)
a/ \(R=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right]\)
\(=1:\left[\frac{x^2+2+\left(x+1\right)\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)
\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x}{x^2+x+1}\right)\)
\(=\frac{x^2+x+1}{x}\)
b/ Ta có: \(R=\frac{x^2+x+1}{x}=3+\frac{\left(x-1\right)^2}{x}>3\)
Vậy R > 3
Cho \(R=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
a,Rút gọn R
b,So sánh R với 3
c,Tìm GTNN của R
d,Tìm \(x\in Z\) để R>4
p = \(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)
a, rút gọn P
b, tìm GTNN, GTLN của P
c. tính P tại x= 3-2\(\sqrt{2}\)
d, tìm x để P>0
e. so sánh p vs \(-2\sqrt{x}\)
ĐKXĐ:\(x>0,x\ne1\)
\(\Leftrightarrow P=\left(\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right)\cdot\left(\dfrac{1-x}{2\sqrt{x}}\right)^2\)
\(\Leftrightarrow P=\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\cdot\dfrac{\left(1-x\right)^2}{4x}\)
\(\Leftrightarrow P=\dfrac{-4\sqrt{x}}{x-1}\cdot\dfrac{\left(x-1\right)^2}{4x}\)
\(\Leftrightarrow P=\dfrac{1-x}{\sqrt{x}}\)
cho P= (\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x-3}}\)-\(\dfrac{3x+3}{x-9}\)) : (\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1)
a, Rút gọn P
b, Tìm x để P < \(\dfrac{1}{2}\)
c, Tìm GTNN của P
a: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
\(C=\left(\dfrac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\dfrac{5}{2\sqrt{x}-3}\right)\div\left(3+\dfrac{2}{1-\sqrt{x}}\right)\)
a) Rút gọn C
b) Tính C với \(x=\dfrac{2}{2-\sqrt{3}}\)
c) Tìm x để C= –1
d) Tìm x để C > 0
e) So sánh C’ với –2
f) Tìm GRNN của C’ với C’=\(\dfrac{1}{C}\times\dfrac{1}{\sqrt{x}+1}\)
i)Tìm \(x\in Z\) để \(C'\in Z\) g) Tìm m để pt C’.m = –1 có nghiệm
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;\dfrac{25}{9};\dfrac{9}{4}\right\}\end{matrix}\right.\)
a: \(C=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\dfrac{5}{2\sqrt{x}-3}\right):\left(3-\dfrac{2}{\sqrt{x}-1}\right)\)
\(=\dfrac{2\sqrt{x}-5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}:\dfrac{3\sqrt{x}-3-2}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=-\dfrac{1}{2\sqrt{x}-3}\)
b: \(x=\dfrac{2}{2-\sqrt{3}}=2\left(2+\sqrt{3}\right)=4+2\sqrt{3}\)
Khi \(x=4+2\sqrt{3}\) thì \(C=-\dfrac{1}{2\left(\sqrt{3}+1\right)-3}=\dfrac{-1}{2\sqrt{3}-1}=\dfrac{-2\sqrt{3}-1}{11}\)
c: C=-1
=>\(2\sqrt{x}-3=1\)
=>\(\sqrt{x}=2\)
=>x=4(nhận)
d: C>0
=>\(2\sqrt{x}-3< 0\)
=>\(\sqrt{x}< \dfrac{3}{2}\)
=>\(0< =x< \dfrac{9}{4}\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< =x< \dfrac{9}{4}\\x< >1\end{matrix}\right.\)
Cho biểu thức R= \(\left(\frac{\sqrt{X}}{\sqrt{X}-2}-\frac{4}{X-2\sqrt{X}}\right)\left(\frac{1}{\sqrt{X}+2}+\frac{4}{X-4}\right)\)vs x>0, x \(\ne\)4
a, Rút gọn R
b, Tính gt của R khi \(x=4+2\sqrt{3}\)
c, Tính gt của R để R>0
Cho biểu thức P=\(\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)với x\(\ge\)0
a)Rút gọn P
b)Tìm x để P=\(\dfrac{8}{9}\)
c)Tìm GTNN và GTLN của P