cho tam giác ABC đều.M trung điểm AB,I trung điểm BC,N trung điểm BC.CMR:B;M;N;;C thuộc 1 đường tròn
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
cho tam giác ABC vuông tại A có AB=3cm,BC=5cm. Gọi N là trung điểm BC, trên tia đối N lấy điếm D sao cho ND=NA
a)C/m: tam giác ACN= tam giác DBN
b)Tính BD
c)Gọi M là trung điểm AB. C/m: tam giác MDC cân
d)MD cắt BC tại H, gọi I là trung điểm của AC, DI cắt BC tại K. C/m: tam giác HBD= tam giác KCA
a) Xét ΔACN và ΔDBN có
NA=ND(gt)
\(\widehat{ANC}=\widehat{DNB}\)(hai góc đối đỉnh)
NC=NB(N là trung điểm của BC)
Do đó: ΔACN=ΔDBN(c-g-c)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Ta có: ΔACN=ΔDBN(cmt)
nên AC=DB(hai cạnh tương ứng)
mà AC=4cm(cmt)
nên BD=4cm
Vậy: BD=4cm
c) Xét ΔCAM vuông tại A và ΔDBM vuông tại B có
AC=BD(cmt)
MA=MB(M là trung điểm của AB)
Do đó: ΔCAM=ΔDBM(hai cạnh góc vuông)
Suy ra: MC=MD(Hai cạnh tương ứng)
Xét ΔMCD có MC=MD(cmt)
nên ΔMCD cân tại M(Định nghĩa tam giác cân)
cho tam giác ABC nhọn. M là trung điểm AC. kẻ MH vuông góc AB, H thuộc AB. I là tâm đường tròn ngoại tiếp tam giác ABC. N là trung điểm BC, P là trung điểm IN. chứng minh P là tâm đường tròn ngoại tiếp tam giác BCH.
Cho tam giác ABC có D trung điểm của AB, từ E vẽ DE song song với BC
a. Chứng minh DE là đường trung bình của tam giác ABC
b. Tia phân giác của góc A cắt BC tại I. Vẽ điểm K sao cho N là trung điểm của IK.
Giúp với ạ
Cho tam giác đều ABC. Gọi M, N, P lần lượt là các điểm trên AB, BC, CA sao cho AM = BN = CP, I là trung điểm của MP, kẻ MQ song song với AC(Q thuộc BC)
a) CMR I là trung điểm AQ
b) O là giao điểm 3 trung trực tam giác ABC. CMR O là cùng giao 3 trung trực tam giác MNP
Bài 1: Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB, AC.
a)Chứng minh MN // BC
b)Gọi D là điểm bất kỳ thuộc cạnh BC ( D khác B,C), AD cắt MN tại I. Chứng
minh I là trung điểm của AD.
Bài 2: Cho tam giác ABC cân tại A, M là trung điểm của BC. Kẻ Mx// AC cắt AB tại E, kẻ My// AB cắt AC tại F. Chứng minh rằng:
1)E,F là trung điểm của AB, AC
2) FE = 1/2 BC
3) ME=MF, AE=FA
Bài 1 : a) M là trung điểm AB
N là trung điểm AC
suy ra : MN là Đường trung bình của tam giác ABC
suy ra : MN // BC ; MN = BC/2
b) Ta có : MN // BC và M là trung điểm AB
Mà AD cắt MN tại I nên từ đó suy ra : I là trung điểm của cạnh AD
em chỉ giải được bài 1 thôi nên thông cảm ạ