Đặt nhân tử :
a) x^3-16x
b) x^3-3x^2-4x
c) x^2-y^2+2x+1
d) ax^2+ay-bx^2-by
e) 2x^3-4x^2+x-2
Phân tích đa thức thành nhân tử
a) \(5x-y+ax-ay\)
b) \(a^3-a^2x-ay+xy\)
c) \(4x^2-y^2+4x+1\)
d) \(x^4+2x^3+x^2\)
e) \(5x^2-10xy+5y^2-5z^2\)
a Đề sai: )
b
\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)
c
\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)
d
\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)
e
\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)
c: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
d: =x^2(x^2+2x+1)
=x^2(x+1)^2
e: =5(x^2-2xy+y^2-z^2)
=5[(x-y)^2-z^2]
=5(x-y-z)(x-y+z)
Phân tích các đa thức sau thành nhân tử:
a) (3x-1)^2 -16
b) (5x-4)^2 49x^2
c) (2x +5)^2 -(x-9)^2
d) (3x+1)^2 - 4(x-2)^2
e) 9(2x+3)^2 -4(x+1)^2
f)4b^2c^2 -(b^2+c^2-a^2)^2
g) (ax+by)^2 -(ay+bx)^2
h) (a^2+b^2-5)^2 -49ab+2)^2
i) (4x^2-3x-18)^2 -(4x^2 +3x)^2
k) 9(x+y-1)^2 4(2x+3y+1)^2
l) -4x^2 +12xy -9y^2+25
m) x^2 -2xy +y^2 -4m^2+4mn-n^2
a)\(\left(3x-1\right)^2-16=\left(3x-1-16\right)\left(3x-1+16\right)\)
\(=\left(3x-17\right)\left(3x+15\right)\)
c)\(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5+x-9\right)\left(2x+5-x+9\right)\)
\(=\left(x-4\right)\left(x+14\right)\)
Aps dungj t/c a2 - b2 = ( a-b)(a+b)
Phân tích các đa thức sau thành nhân tử:
a) -16a^4b^6 - 24a^5b^5 - 9a^9b^4
b) ( 3x - 1)^2 - 16
c) ( 3x + 1)^2 - 4( x - 2 )^2
d) ( ax + by) ^2 - ( ay + bx )^2
e) ( 4x^2 - 3x - 18)^2 - ( 4x^2 + 3x )^2
g) 8x^3 - 64
h) 8x^3 - 27
i) x^3 + 6x^2 + 12x + 8
k) x^3 + 3/2x^2 + 3/4x + 1/8
Giúp mình nhé, mình cần gấp lắm
phân tích các đa thức thành nhân tử bằng cách nhóm nhiều hạng tử:
a)x3-2x2+2x-13
b)x2y+xy+x+1
c) ax+by+ay+bx
d)x2-(a+b)x+ab
e) x2y+xy2-x-y
f)ax2+ay-bx2-by
Phân tích đa thức thành nhân tử:
a, 3x^2 +2x
b, 5x - 5y + ax - ay
c, 4x^2 - 25
d,x^2 +6x +5
e, x^2 - y^2 + 2y -1
f, x^3 - 3x + 2
\(a,3x^2+2x=x\left(3x+2\right)\)
\(b,5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(5+a\right)\)
\(c,4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
\(d,x^2+6x+5=x^2+x+5x+5=x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(x+5\right)\)
\(e,x^2-y^2+2y-1=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)
a ) 3x2 + 2x
= x. ( 3x + 2 )
b ) 5x - 5y + ax - ay
= ( 5x + ax ) - ( 5y + ay )
= x.( 5 + a ) - y ( 5 + a )
= ( 5 + a ) ( x - y )
c ) 4x2 - 25
= ( 2x + 5 ) ( 2x - 5 )
d ) x2 + 6x + 5
= x2 + x + 5x + 5
= x.( x + 1 ) + 5.( x + 1 )
= ( x + 1 ) ( x + 5 )
e ) x2 - y2 + 2y - 1
= x2 - ( y - 1 )2
= ( x - y + 1 ) ( x + y - 1 )
f ) x3 - 3x + 2
= x3 + 2x2 - 2x2 - 4x + x + 2
= x2 ( x + 2 ) - 2x ( x + 2 ) + ( x + 2 )
= ( x + 2 ) ( x2 - 2x + 1 )
= ( x + 2 ) ( x - 1 )2
\(a)\)\(3x^2+2x=x\left(3x-2\right)\)
\(b)\)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(c)\)\(4x^2-25=\left(2x\right)^2-5^2=\left(2x-5\right)\left(2x+5\right)\)
\(d)\)\(x^2+6x+5=\left(x^2+x\right)+\left(5x+5\right)=x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(x+5\right)\)
\(e)\)\(x^2-y^2+2y-1\)
\(=\)\(x^2-\left(y^2-2y+1\right)\)
\(=\)\(x^2-\left(y-1\right)^2\)
\(=\)\(\left(x-y+1\right)\left(x+y-1\right)\)
\(f)\)\(x^3-3x+2\)
\(=\)\(\left(x^3-x\right)-\left(2x-2\right)\)
\(=\)\(x\left(x^2-1\right)-2\left(x-1\right)\)
\(=\)\(x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\)
\(=\)\(\left(x-1\right)\left[x\left(x+1\right)-2\right]\)
\(=\)\(\left(x-1\right)\left(x^2+x-2\right)\)
Chúc bạn học tốt ~
1.Phân tách các đa thức sau thành nhân tử:
a)x2-ax+bx-ab
b)x2+ay-y2-ax
c)x3-3x2-4x+12
2.Tìm x biết:
a)2x2-12x=-18
b)(4x2-4x+1)-x2=0
1.a)\(x^2-ax+bx-ab=x\left(x-a\right)+b\left(x-a\right)=\left(x+b\right)\left(x-a\right)\)
b)\(x^2+ay-y^2-ax=\left(x-y\right)\left(x+y\right)-a\left(x-y\right)=\left(x+y-a\right)\left(x-y\right)\)
c)\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-4\right)\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
2.a)\(2x^2-12x=-18=>2x^2-12x+18=0=>x^2-6x+9=0=>\left(x-3\right)^2=0=>x-3=0=>x=3\)b)\(\left(4x^2-4x+1\right)-x^2=0=>3x^2-3x-x+1=3x\left(x-1\right)-\left(x-1\right)=\left(3x-1\right)\left(x-1\right)=0\)
\(=>\orbr{\begin{cases}3x-1=0\\x-1=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)
a) 2x2 - 12x = -18
<=> 2x2 - 12x + 18 = 0
<=> 2(x2 - 6x + 9) = 0
<=> 2(x2 - 2.x.3 + 9) = 0
<=> 2(x - 3)2 = 0
<=> x - 3 = 0
<=> x = 0 + 3
<=> x = 3
b) (4x2 - 4x + 1) - x2 = 0
<=> 4x2 - 4x + 1 - x2 = 0
<=> 3x2 - 4x + 1 = 0
<=> 3x2 - x - 3x + 1 = 0
<=> x(3x - 1) - (3x - 1) = 0
<=> \(\orbr{\begin{cases}\left(3x-1\right)=0\\\left(x-1\right)=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}\)
bài 2
a)\(2x^2-12x=-18\)
\(\Rightarrow2(x^2-6x+9)=0\)
\(\Rightarrow\left(x-3\right)^2=0\)
\(\Rightarrow x=3\)
Vậy......
b) \(\left(4x^2-4x+1\right)-x^2=0\)
\(\Rightarrow\left(2x-1\right)^2-x^2=0\)
\(\Rightarrow\left(3x-1\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\Leftrightarrow x=\frac{1}{3}\\x-1=0\Leftrightarrow x=1\end{cases}}\)
Vậy.....
Phân tích các đa thức sau thành nhân tử:
\(A=4x^2+6x\). \(B=\left(2x+3\right)^2-x\left(2x+3\right)\). \(C=\left(9x^2-1\right)-\left(3x-1\right)^2\).
\(D=x^3-16x\). \(E=4x^2-25y^2\). \(G=\left(2x+3\right)^2-\left(2x-3\right)^2\).
\(A=4x^2+6x=2x\left(2x+3\right)\)
\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)
\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)
\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)
\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)
\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)
PHƯƠNG PHÁP NHÓM NHIỀU HẠNG TỬ
Phân tích các đa thức sau thành nhân tử :
a) x3 - 2x2 + 2x -13
b) x2y+ xy+x+1
c) ax+by+ay+bx
d) x2 - (a+b)x +ab
e) x2y +xy-x-y
f) ax2 +ay -bx2-by
a) \(x^3-2x^2+2x-1^3\)
\(=x\left(x^2-2x+1\right)+x-1\)
\(=x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x+1\right)\left(x-1\right)\)
b) \(x^2y+xy+x+1\)
\(=xy\left(x+1\right)+\left(x+1\right)\)
\(=\left(xy+1\right)\left(x+1\right)\)
c) \(ax+by+ay+bx\)
\(=a\left(x+y\right)+b\left(x+y\right)\)
\(=\left(a+b\right)\left(x+y\right)\)
d) \(x^2-\left(a+b\right)x+ab\)
\(=x^2-ax-bx+ab\)
\(=\left(x^2-ax\right)-\left(bx-ab\right)\)
\(=x\left(x-a\right)-b\left(x-a\right)\)
\(=\left(x-b\right)\left(x-a\right)\)
e) Ko biết làm
f) \(ax^2+ay-bx^2-by\)
\(=\left(ax^2+ay\right)-\left(bx^2+by\right)\)
\(=a\left(x^2+y\right)-b\left(x^2+y\right)\)
\(=\left(a-b\right)\left(x^2+y\right)\)
a, x3 - 2x2 + 2x - 13
= x3 - 2x2 . 1+ 2x.12 - 13
= (x - 3 )3
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^