Viết các biểu thức sau dưới dạng bình phương hoặc lập phương của 1 tổng 1 hiệu
a.x^2 -5x +25/a
b.16x^2 - 8 x + 1
c. 4x^2 + 12xy + 9 y^2
d. x^3 + 3X ^2 + 3x +1
e. 27 y ^3 -9y^2 + y - 1/27
f. 8x^6 + 12x^4y +6 x^2 y^2 +y ^2
Viết các đa thức sau dưới dạng lập phương của một tổng hoặc lập phương của một hiệu
a) A = 8x^3 +12x^2y +6xy^2+y^3
b) B = x^3+3x^2+3x+1
c) C = x^3-3x^2+3x-1
d) D = 27+27y^2+9y^4+y^6
a) \(A=8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
b) \(B=x^3+3x^2+3x+1=\left(x+1\right)^3\)
c) \(C=x^3-3x^2+3x-1=\left(x-1\right)^3\)
d) \(D=27+27y^2+9y^4+y^6=\left(3+y^2\right)^3\)
B1: Viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu, hoặc hiệu 2 bình phương
a) 4x^4 - 4x^2 +1
b) 16x^2 - 8xy +y^2
c) 49y^2 - 14yz + z^2
d) 64x^2 - 16x + 1
e) 3x^2 - 2√3xy^2 + y^4
f) 5y^2 - 4√5y + 4
g) (√3x - y) (√3x +y)
h) (2√3x - 2y) (2√3x + 2y)
B2: Khai triển hằng đẳng thức sau
a) (2x + y)^3
b) (4x - y)^3
c) (25x + 2)^3
d) 1/2x + 3)^3
Bài 2: Viết các biểu thức sau dưới dạng bình phương của một tổng, một hiệu hoặc lập phương của một tổng, một hiệu
1, x\(^2\)+2xy+y\(^2\)
2, 4x\(^2\)+12x+9
3, x\(^2\)+5x+\(\dfrac{25}{4}\)
4, 16x\(^2\)-8x+1
5, x\(^2\)+x+\(\dfrac{1}{4}\)
6, x\(^2\)-3x+\(\dfrac{9}{4}\)
7, x\(^3\)+3x\(^2\)+3x+1
8,(\(\dfrac{x}{4}\))\(^2\)+x+1
9, 27y\(^3\)-9y\(^2\)+y-\(\dfrac{1}{27}\)
10, 8x\(^3\)+12x\(^2\)y+6xy\(^2\)+y\(^3\)
1, \(x^2+2xy+y^2=\left(x+y\right)^2\)
2, \(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)
3, \(x^2+5x+\dfrac{25}{4}=x^2+2\cdot\dfrac{5}{2}\cdot x+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)
4, \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x\cdot1+1^2=\left(4x-1\right)^2\)
5, \(x^2+x+\dfrac{1}{4}=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
1: =(x+y)^2
2: =(2x+3)^2
3: =(x+5/2)^2
4: =(4x-1)^2
5: =(x+1/2)^2
6: =(x-3/2)^2
7: =(x+1)^3
8: =(1/2x+1)^2
9: =(3y-1/3)^3
10: =(2x+y)^3
6, \(x^2-3x+\dfrac{9}{4}=x^2-2\cdot\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2=\left(x-\dfrac{3}{2}\right)^2\)
7, \(x^3+3x^2+3x+1=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x+1\right)^3\)
8, \(\dfrac{x^2}{4}+x+1=\left(\dfrac{x}{2}\right)^2+2\cdot\dfrac{x}{2}\cdot1+1^2=\left(\dfrac{x}{2}+1\right)^2\)
9, \(27y^3-9y^2+y-\dfrac{1}{27}=\left(3y\right)^3-3\cdot\left(3y\right)^2\cdot\dfrac{1}{3}+3\cdot3y\cdot\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3=\left(3y-\dfrac{1}{3}\right)^3\)
10, \(8x^3+12x^2y+6xy^2+y^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3=\left(2x+y\right)^3\)
Biểu diễn các đa thức sau dưới dạng lập phương của một tổng hay một hiệu :
a, x^3 + 3x^2 +3x +1
b,27y^3 - 9y^2 +y -1/27
c, 8x^6 +12x^4y+6x^2y^2+y^3
d, (x+y) ^3 .(x-y)^3
e, (x^2 -y^2)^2.( x+y).(x-y)
a) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
b) \(27y^3-9y^2+y-\frac{1}{27}=\left(3y-\frac{1}{3}\right)^3\)
c) \(8x^6+12x^4y+6x^2y+y^3=\left(2x^2+y\right)^3\)
d) \(\left(x+y\right)^3\left(x-y\right)^3=\left(x^2-y^2\right)^3\)
e) \(\left(x^2-y^2\right)^2\left(x+y\right)\left(x-y\right)=\left(x^2-y^2\right)^3\)
Viết các biểu thức sau dưới dạng bình phương của 1 tổng , 1 hiệu :
a) 5x^2 + y^2 + z^2 + 4xy - 2xz
b) 9x^2 + 25 - 12xy + 2y^2 - 10y
c) 13x^2 + 4x - 12xy + 4y^2 + 1
d) x^2 + 4y^2 + 4x - 4y +5
Viết các biểu thức sau đây dưới dạng lập phương của 1 tổng hoặc hiệu:
a)x^3+9x^2+27x+27
b)x^3/8+3/4x^2y^2+3/2xy^4+y^6
viết các biểu thức sau dưới dạng lập phương 1 tổng hoặc lập phương 1 hiệu
x3+12x2+48x+64 x3-12x2+48x-64 8x3+12x2y+6xy2+y3
x3-3y2+3x-1 8-12x+6x2-x3 -27y3+9y2-y+1/27
a) Ta có: \(x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)
\(=\left(x+4\right)^3\)
b) Ta có: \(x^3-12x^2+48x-64\)
\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)
\(=\left(x-4\right)^3\)
c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
d)Sửa đề: \(x^3-3x^2+3x-1\)
Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
e) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)
\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)
\(=\left(\frac{1}{3}-3y\right)^3\)
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc hiệu:
a) x^2+x+1/4
b) x^2+12xy+36xy^2
c) 4x^2-12xy+9y^2
d) x^2-2x+4
e) 25x^2+4y^2-20xy
a) \(x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2\)
b) \(x^2+12xy+36y^2=\left(x+6y\right)^2\)
c) \(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
d) Không phải hằng đẳng thức \(\left(x^2-2x+4=\left(x-1\right)^2+3\right)\)
e) \(25x^2+4y^2-20xy=\left(5x-2y\right)^2\)
Viết các đa thức sau dưới dạng tích của các đa thức
a, 0,04-1/9x^2
b, 64X^3+1/27
c, 49-x^2. y^2
d, 4x^2- 9y^2
e, 27x^3+1
f, (3x-1)^2-(x+3)
g, (2/5x+1/3)^2- (x/5-1/3)^2