Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thị Hương Đào

viết các biểu thức sau dưới dạng lập phương 1 tổng hoặc lập phương 1 hiệu

x3+12x2+48x+64 x3-12x2+48x-64 8x3+12x2y+6xy2+y3

x3-3y2+3x-1 8-12x+6x2-x3 -27y3+9y2-y+1/27

Nguyễn Lê Phước Thịnh
12 tháng 9 2020 lúc 13:53

a) Ta có: \(x^3+12x^2+48x+64\)

\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)

\(=\left(x+4\right)^3\)

b) Ta có: \(x^3-12x^2+48x-64\)

\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)

\(=\left(x-4\right)^3\)

c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)

\(=\left(2x+y\right)^3\)

d)Sửa đề: \(x^3-3x^2+3x-1\)

Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)

\(=\left(x-1\right)^3\)

e) Ta có: \(8-12x+6x^2-x^3\)

\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)

\(=\left(2-x\right)^3\)

f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)

\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)

\(=\left(\frac{1}{3}-3y\right)^3\)


Các câu hỏi tương tự
Hạ Quỳnh
Xem chi tiết
Thị Hương Đào
Xem chi tiết
Chanhh
Xem chi tiết
Đào Phúc Việt
Xem chi tiết
Đào Phúc Việt
Xem chi tiết
Đào Phúc Việt
Xem chi tiết
Đào Phúc Việt
Xem chi tiết
Ducky
Xem chi tiết
yến hải
Xem chi tiết