Giả sử PT : \(x^2+ax+b+1=0\) có 2 nghiệm nguyên dương . Chứng minh : \(a^2+b^2\) là hợp số
Giả sử phương trình x^2 +ax+b+1=0 có 2 nghiệm nguyên dương. Chứng minh rằng a^2+ b^2 là hợp số
giả sử phương trình bậc 2 : x^2 + ax + b + 1 = 0 có hai nghiệm nguyên dương. chứng minh rằng : a^2 + b^2 là 1 hợp số
gọi x1,x2 là hai nghiệm \(\Rightarrow x_1+x_2=-a\) và \(x_1x_2=b+1\)
Ta có : \(a^2+b^2=\left[-\left(x_1+x_2\right)\right]^2+\left(x_1x_2-1\right)^2\)
\(\Rightarrow a^2+b^2=\left(x_1^2+x_2^2+2x_1x_2\right)+\left(x_1^2x_2^2-2x_1x_2+1\right)\)
\(\Rightarrow a^2+b^2=x_1^2+x_2^2+x_1^2x_2^2+1=\left(x_1^2+1\right)\left(x_2^2+1\right)\)là hợp số
giả sử phương trình bậc hai x2+ax+b = 0 có hai nghiệm nguyên dương . chứng minh rằng a2+ b2 là một hợp số
Giả sử phương trình bậc hai \(x^2+ax+b+1=0\)có hai nghiệm nguyên dương . Chưng minh rằng \(a^2+b^2\)là hợp số
Các bạn giải chi tiết giùm mk nhé
Cho phương trình 3x2 + ax + 3b + 27=0 ( x là ẩn; a, b là các số nguyên khác 0). Giả sử phương trình có các nghiệm đều nguyên. Chứng minh rằng a2 + b2 là hợp số
Cho phương trình x2 + ax +b =0 (1) với a,b là tham số nguyên. Giả sử pt(1) có một nghiệm là 2 - \(\sqrt{3}\) . Tìm a và b
Do pt có 1 nghiệm là \(2-\sqrt{3}\)
\(\Rightarrow\left(2-\sqrt{3}\right)^2+a\left(2-\sqrt{3}\right)+b=0\)
\(\Leftrightarrow7-4\sqrt{3}+2a-a\sqrt{3}+b=0\)
\(\Leftrightarrow2a+b+7=\left(a+4\right)\sqrt{3}\)
Vế trái là số hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}a+4=0\\2a+b+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=1\end{matrix}\right.\)
Giả sử phương trình bậc hai \(x^2+ax+b+1=0\) có hai nghiệm dương. CMR \(a^2+b^2\)là hợp số
cho a;b là 2 số thực thỏa mãn 5a+b=22 biết pt x^2+ax+b=0 có 2 nghiệm là 2 số nguyên dương tìm 2 nghiệm đó
Ta có:
\(x^2+y^2+x+y=4\)x(x+y+1)+y(y+1)=2=>
x^2+y^2+x+y=4x^2+y^2+x+y+xy=2=>
(x+y)^2+(x+y)-2xy=4xy=-2=>
(x+y)(x+y+1)=0xy=-2=>1)
x+y=0xy=-22)
x+y=-1xy=-2giải các hệ pt 1) và 2) ta được (x;y)=(\(\left(\sqrt{2};-\sqrt{2}\right),\left(-\sqrt{2};\sqrt{2}\right),\left(-2;1\right),\left(1;-2\right)\)
giả sử pt bậc 2: \(x^2+mx+n+1=0\)có 2 nghiệm nguyên dương. CMR
\(m^2+n^2\) là 1 hợp số
bạn nè,mặc dù mình ko biết làm nhưng bạn chỉ cần cố gắng là làm được