Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kudo Shinichi
Xem chi tiết
Trịnh Gia Bảo
22 tháng 11 2020 lúc 20:09

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

Khách vãng lai đã xóa
yeens
Xem chi tiết
Trương Huy Hoàng
8 tháng 3 2021 lúc 22:03

Mk ms tìm được GTNN thôi!

Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)

Áp dụng BĐT Cô-si cho 2 số ko âm a2 và b2 ta có:

a2 + b2 \(\ge\) 2ab

\(\Leftrightarrow\) 1 \(\ge\) 2ab

\(\Leftrightarrow\) 1 - 2ab \(\ge\) 0

\(\Leftrightarrow\) 1 - ab \(\ge\) ab

\(\Rightarrow\) A \(\ge\) ab(a + b)

Dấu "=" xảy ra khi và chỉ khi a = b = \(\sqrt{0,5}\)

\(\Rightarrow\) A \(\ge\) 0,5 . 2\(\sqrt{0,5}\) = \(\sqrt{0,5}\)

Vậy ...

Chúc bn học tốt!

Nguyễn Việt Lâm
8 tháng 3 2021 lúc 23:18

\(a^2+b^2=1\Rightarrow\left\{{}\begin{matrix}0\le a\le1\\0\le b\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\le a^2\\b^3\le b^2\end{matrix}\right.\)

\(\Rightarrow a^3+b^3\le a^2+b^2=1\)

\(A_{max}=1\) khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)

\(a^3+a^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}a^2\)

\(b^3+b^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}b^2\)

Cộng vế:

\(2\left(a^3+b^3\right)+\dfrac{\sqrt{2}}{2}\ge\dfrac{3}{\sqrt{2}}\left(a^2+b^2\right)=\dfrac{3\sqrt{2}}{2}\)

\(\Rightarrow a^3+b^3\ge\dfrac{\sqrt{2}}{2}\)

\(A_{min}=\dfrac{\sqrt{2}}{2}\) khi \(a=b=\dfrac{\sqrt{2}}{2}\)

Trương Huy Hoàng
8 tháng 3 2021 lúc 22:17

Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)

Áp dụng BĐT Cô-si cho 2 số (a + b)2 và 1 ko âm ta có:

\(\dfrac{\left(a+b\right)^2+1}{2}\ge a+b\)

\(\Leftrightarrow\) \(\dfrac{a^2+b^2+2ab+1}{2}\ge a+b\)

\(\Leftrightarrow\) \(\dfrac{2+2ab}{2}\ge a+b\)

\(\Leftrightarrow\) 1 + ab \(\ge\) a + b

\(\Leftrightarrow\) (1 - ab)(1 + ab) \(\ge\) A

\(\Leftrightarrow\) 1 - a2b2 \(\ge\) A

Dấu "=" xảy ra \(\Leftrightarrow\) ab = 1; a2 + b2 = 1

Khi đó: A \(\le\) 0

Vậy ...

Chúc bn học tốt!

Trần Văn Thành
Xem chi tiết
Ngô Linh
Xem chi tiết
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 1:19

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

Đinh Thị Ngọc Anh
Xem chi tiết
Ngô Linh
Xem chi tiết
thoi dai hiep si
14 tháng 9 2017 lúc 21:46

bai dai dong qua

uzumaki naruto
14 tháng 9 2017 lúc 22:10

a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0

\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)

\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)

\(-5x-8=0\)

\(x=-\frac{8}{5}\)

Mai mik làm mấy bài kia sau

uzumaki naruto
16 tháng 9 2017 lúc 21:24

2/

b) ( cái bài này chịu)

c) (x+1)^3-(x-1)^3-6(x-1)^2=-10

(x+1-x+1)\(\left[\left(x+1\right)^2+\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)\(-6\left(x^2-2x+1\right)=-10\)

\(2\left(x^2+2x+1+x^2-1+x^2-2x+1\right)-6x^2+12x-6=-10\)

\(2\left(3x^2+1\right)-6x^2+12x-6=0\)

\(6x^2+2-6x^2+12x-6=-10\)

\(12x=-10+4\)

\(12x=-6=>x=-\frac{1}{2}\)

d) (5x-1)^2-(5x-4)(5x+4)=7

\(25x^2-10x+1-25x^2+16=7\)

-10x = 7 - 17

-10x = -10

x= 1

Câu còn lại bn làm tương tự

3/

a) 

Ta có: 

(a+b+c)^2=3(ab+bc+ca)

a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 3ab + 3bc + 3ac

a^2 + b^2 + c^2 + 2ab + 2ac + 2bc - 3ab - 3bc - 3ac = 0

a^2 + b^2 + c^2  - ac - bc - ab = 0

2a^2 + 2b^2 + 2c^2  - 2ac - 2bc - 2ab = 0

(a2-2ab+b2)+(a2-2ac+c2) + (b2-2bc +c2) = 0

(a-b)^2 + (a-c)^2 + (b-c)^2 =0

=> a=b=c

Nguyễn Hoàng trung
Xem chi tiết
Akai Haruma
14 tháng 10 2021 lúc 16:52

Đề bài nên là $a,b>0$ sao cho $a+b=1$

Akai Haruma
14 tháng 10 2021 lúc 16:56

Lời giải:

Áp dụng BĐT  AM-GM:

$1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}$
\(M=\frac{a^2+b^2}{ab}+ab=\frac{(a+b)^2-2ab}{ab}+ab=\frac{1}{ab}+ab-2\)

Tiếp tục áp dụng BĐT AM-GM:

\(ab+\frac{1}{16ab}\geq \frac{1}{2}\)

\(\frac{15}{16ab}\geq \frac{15}{16.\frac{1}{4}}=\frac{15}{4}\)

$\Rightarrow ab+\frac{1}{ab}\geq \frac{17}{4}$

$\Rightarrow M\geq \frac{9}{4}$

Vậy $M_{\min}=\frac{9}{4}$ khi $a=b=\frac{1}{2}$

Hoàng Thu Hương
Xem chi tiết
LONG NGOC QUYNH
2 tháng 11 2017 lúc 4:27

bài 1:

a) (x+1)^2-(x-1)^2-3(x+1)(x-1)

=(x+1+x-1)(x+1-x+1)-3x^2-3

=2x^2-3x^2-3

=-x^2-3

Xem chi tiết
๓เภђ ภوยץễภ ђảเ
4 tháng 10 2020 lúc 19:52

B1 

Ta có

\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)

Dấu "=" xảy ra <=> a=6

Vậy Min A = 39 <=> a=6

Khách vãng lai đã xóa
Kiệt Nguyễn
4 tháng 10 2020 lúc 19:57

 \(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)

Đẳng thức xảy ra khi a = 6

Khách vãng lai đã xóa
KCLH Kedokatoji
4 tháng 10 2020 lúc 19:59

B3: Áp dụng bđt AM-GM

\(A=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{3\left(a+b\right)}{4\sqrt{ab}}\ge2\sqrt{\frac{a+b}{4\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}+\frac{3\left(a+b\right)}{4\left(\frac{a+b}{2}\right)}\)

\(=1+\frac{3\left(a+b\right)}{2\left(a+b\right)}=1+\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(a=b>0\)

Khách vãng lai đã xóa