chứng minh A=11...11 - 22...22 (có 2n chữ số 1 và n chữ số 2) là một số chính phương
B=11...........11+11.............11+66.......66+8
có 2n chữ số 1 thứ nhất
có n+1 chữ số 1 thứ hai
có n chữ số 6
C=44......44+22......22+88......88+7
có 2n chữ số 4
có n+1 chữ số 2
có n chữ số 8
chứng minh rằng đây là số chính phương
Bài 1: Chứng minh A= 11...1-22...2 (có 2n chữ số 1 va n chữ số 2) là số chính phương với n là số nguyên dương
Bài 2: Chứng minh B=11...122...2 là tích 2 số nguyên liên tiếp
1. Câu hỏi của H - Toán lớp 8 - Học toán với OnlineMath
bài 1: tìm hai số b và q biết 85 cia cho b được thương là q và dư 8
bài 2 : cho A = 11...1- 22...2 (11...1 có 20 chữ số; 22..2 có 10 chữ số)
chứng minh A là số chính phương
2.Câu hỏi của H - Toán lớp 8 - Học toán với OnlineMath
chứng tỏ các hiệu sau là số chính phương:
A= 111..11 (100 số 1) - 222..222 (50 số 2)
B= 111..11 (50 số 1) - 999..99 (50 số 9)
C= 111..11 (2n chữ số 1) - 22..22 (n chữ số 2)
chứng minh M-N là số chính phương biết M=11...1(100 chữ số 1) N=22...2(50 chữ số 2)
A=11...1( 2n chữ số 1), B=22...2( n chữ số 2).cmA-B chính phương
Ta có A-B=11...1(2n c/s 1)-22....2(n c/s 2)
A-B=11....1(n c/s 1)x10n +11.....1(n /s 1)-2x 11.....1(n c/s 1)
Đặt 11.....1(n c/s 1)=a(a thuộc N)
A-B=a(9a+1)+a-2a
A-B=9a2+a+a-2a
A-B=9a2
A-B=(3a)2.Vì a thuộc N nên 3a thuộc N nên A-B là số chính phương
Chứng minh: 11.....1( 2n chữ số ) - 22.....2( n chữ số ) là số chính phương.
Ta có:
\(100=2.50\)
Đặt \(50=n\)
\(\Rightarrow100=2.n\)
Ta có:
\(\dfrac{11.....1}{2n-chữ-số-1}\) + \(\dfrac{22....2}{n-chữ-số-2}\)
\(=\dfrac{10^{2n}-1}{9}-2.\dfrac{10^n-1}{9}\)
\(=\dfrac{10^{2n}}{9}-\dfrac{1}{9}-2.\dfrac{10^n}{9}+\dfrac{2}{9}\)
\(=\left(\dfrac{10^n}{3}\right)^2-2.\dfrac{10^n}{3}.\dfrac{1}{3}+\dfrac{1}{9}\)
\(=\left(\dfrac{10^n}{3}-\dfrac{1}{3}\right)^2\)
\(=\left(\dfrac{10^n-1}{3}\right)^2\)
Vì \(10^{n-1}\) không chia hết cho 3.
\(\Rightarrow\dfrac{10^n-1}{3}\in Z\)
\(\Rightarrow\left(\dfrac{10^n-1}{3}\right)^2\) là số chính phương.
Hay \(11.....1-22.....2\) là số chính phương. ( đpcm )
B=22222...22 [ có n chữ số 2 ]
Chứng minh rằng : A - B là số chính phương
Chúng minh biểu thức A là số chính phương A= 11...1 - 22..2 ( 11...1 có 2n; 22...2 có n)
Đặt 111....1 ( có n số 1) = a (a thuộc N sao) thì
222....2 (có n số 2) = 2a
100....0(có n số 0) = 9a+1
Khi đó A= 111...1(n số 1). 100...0(n số 0) +111...1(n số 1) - 2a
= a.(9a+1) +a - 2a = 9a^2 + a +a -2a = 9a^2 =(3a)^2 chính phương
=> ĐPCM