Ta có:
\(100=2.50\)
Đặt \(50=n\)
\(\Rightarrow100=2.n\)
Ta có:
\(\dfrac{11.....1}{2n-chữ-số-1}\) + \(\dfrac{22....2}{n-chữ-số-2}\)
\(=\dfrac{10^{2n}-1}{9}-2.\dfrac{10^n-1}{9}\)
\(=\dfrac{10^{2n}}{9}-\dfrac{1}{9}-2.\dfrac{10^n}{9}+\dfrac{2}{9}\)
\(=\left(\dfrac{10^n}{3}\right)^2-2.\dfrac{10^n}{3}.\dfrac{1}{3}+\dfrac{1}{9}\)
\(=\left(\dfrac{10^n}{3}-\dfrac{1}{3}\right)^2\)
\(=\left(\dfrac{10^n-1}{3}\right)^2\)
Vì \(10^{n-1}\) không chia hết cho 3.
\(\Rightarrow\dfrac{10^n-1}{3}\in Z\)
\(\Rightarrow\left(\dfrac{10^n-1}{3}\right)^2\) là số chính phương.
Hay \(11.....1-22.....2\) là số chính phương. ( đpcm )