Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn lê hoàng lâm
Xem chi tiết
Lan Anh
Xem chi tiết
nguyễn linh
Xem chi tiết
Nalumi Lilika
Xem chi tiết
Huỳnh Ngọc Phương Thảo
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Thảo Phương
18 tháng 7 2018 lúc 14:05

a)
^MAC = ^MCA = a ---> ^AMH = ^MAC + ^MCA = 2a
sin2a = sinAMH = AH/MA = 2AH/BC = 2(AH/AC).(AC/BC) = 2 sina.cosa

b)
1+cos2a = 1+cosAMH = 1+MH/MA = (MA+MH)/MA = CH/MA = 2CH/BC =
= 2 (CH/AC).(AC/BC) = 2 cosa.cosa = 2 cos^2 (a)

c)
1-cos2a = 1-cosAMH = 1-MH/MA = (MA-MH)/MA = BH/MA = 2BH/BC =
= 2 (BH/AB).(AB/BC) = 2 sinBAH.sinACB = 2 sin^2 (a)
(^BAH = ^ACB = a vì chúng cùng phụ với góc ABC)

tran thi huyen trang
Xem chi tiết
Lee_Zalgo
Xem chi tiết
My Trấn
Xem chi tiết
Cô Hoàng Huyền
16 tháng 10 2017 lúc 9:04

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [C, B] Đoạn thẳng m: Đoạn thẳng [E, H] Đoạn thẳng n: Đoạn thẳng [F, H] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [A, M] A = (-1.98, 1.26) A = (-1.98, 1.26) A = (-1.98, 1.26) C = (7.12, 1.2) C = (7.12, 1.2) C = (7.12, 1.2) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm đường của j, i Điểm H: Giao điểm đường của j, i Điểm H: Giao điểm đường của j, i Điểm E: Giao điểm đường của k, h Điểm E: Giao điểm đường của k, h Điểm E: Giao điểm đường của k, h Điểm F: Giao điểm đường của l, f Điểm F: Giao điểm đường của l, f Điểm F: Giao điểm đường của l, f Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C

a) Xét tam giác AEH và tam giác AHB có:

\(\widehat{AEH}=\widehat{AHB}=90^o\)

Góc A chung

\(\Rightarrow\Delta AEH\sim\Delta AHB\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{AE}{AH}\Rightarrow AE.AB=AH^2\)

Tương tự \(\Delta AHF\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\Rightarrow AF.AC=AH^2\)

Xét tam giác vuông ABC có AH là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(HB.HC=AH^2\)

Vậy nên ta có AE.AB = AF.AC = HB.HC

b)   Ta có \(\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow AH.AC=AB.HC\)

\(\Rightarrow AB.AH.AC=AB.AB.HC\Rightarrow\left(AB.AC\right).AH=AB^2.HC\)

\(\Rightarrow BC.AH.AH=AB^2.HC\Rightarrow AH^2.BC=AB^2.HC\)

\(\Rightarrow\frac{AH^2}{AB^2}=\frac{CH}{BC}\Rightarrow\left(\frac{AH}{AB}\right)^2=\frac{CH}{BC}\Rightarrow sin^2B=\frac{CH}{BC}\) 

c) Xét tam giác vuông ABC có AH là đường cao, áp dụng hệ thức lượng trong tam giác ta có :

\(AC^2=HC.BC\)

Lại có AM là đường trung tuyến ứng với cạnh huyền nên BC = 2AM.

Suy ra \(AC^2=HC.2.AM\Rightarrow\frac{1}{AM}=\frac{2HC}{AC^2}\Rightarrow\frac{AH}{AM}=2.\frac{AH}{AC}.\frac{HC}{AC}\)

\(\Rightarrow sin\widehat{AMB}=2.sin\widehat{ACB}.cos\widehat{ACB}\)