giải phương trình nghiệm nguyên : \(x^2y^2-x^2-7y^2=4xy\)
Giải phương trình nghiệm nguyên : \(x^2y^2-x^2-7y^2=4xy\)
\(x^2y^2-x^2-7y^2=4xy\)
\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)
\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)
\(\Rightarrow x^2-3=n^2\)
\(\Leftrightarrow\left(x-n\right)\left(x+n\right)=3\)
\(x^2y^2-x^2-7y^2=4xy\)
\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)
\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)
\(\Leftrightarrow x^2-3=y^2\)
\(\Leftrightarrow x^2-y^2=3\Leftrightarrow\left(x+y\right)\left(x-y\right)=3\)
Từ đó suy ra phương trình có nghiệm duy nhất: \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)(loại vì nếu thử lại VT = -7 , mà VP = 4xy=4.2.1 = 8 . VT không bằng VP nên phương trình vô nghiệm
x2y2−3y2=x2+4y2+4xy⇔y2(x2−3)=(x+2y)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
y2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> là số chính phương
là số chính phương , nênx2−3=a2⇔x2−a2=3⇔(x−a)(x+a)=3" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
đến đây bạn lập bảng ước ra là được
Giải phương trình nghiệm nguyên
a) \(x^2-3y^2=17\)
b) \(x^2-5y^2=17\)
c) \(15x^2-7y^2=9\)
d) \(x^2+xy+y^2=x^2y^2\)
Giải hệ phương trình:
x2+y2+4x+2y=3 và x2+7y2-4xy+6y=13
đáp án
ko biết
hok tốt
Giải phương trình nghiệm nguyên x^2y+4xy+4y = 162x+162y
Tìm nghiệm nguyên của phương trình:
x^4 -2y^4 - x^2.y^2 - 4x^2 - 7y^2 - 5 =0
Giải p/trình nghiệm nguyên: x2+5y2-4xy+2y=3
giải phương trình nghiệm nguyên: x4 - 2y4 - x2y2 - 4x2 - 7y2 -5 =0
Tìm nghiệm x, y nguyên của phương trình
\(x^2y^2+x^2+y^2+4xy=73\)
Ta có: \(x^2y^2+x^2+y^2+4xy=73\)
<=> \(\left(x^2y^2+4xy+4\right)+x^2+y^2=77\)
<=> \(\left(xy+2\right)^2+x^2=77-y^2\) (1)
Do \(\left(xy+2\right)^2+x^2\ge0\) => \(77-y^2\ge\)0 => \(y^2\le77\)
Do y nguyên và y2 là số chính phương => y2 \(\in\){0; 1; 4; 9; 16; 25; 36; 49; 64}
=> \(y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7;\pm8\right\}\)
thay y vào pt (1) ... (tự làm)
Hoặc C2:
\(x^2y^2+x^2+y^2+4xy=73\)
<=> \(\left(x^2y^2+2xy+1\right)+\left(x^2+2xy+y^2\right)=74\)
<=> \(\left(xy+1\right)^2+\left(x+y\right)^2=74=5^2+7^2\)
Xét các TH xảy ra:
+) \(\hept{\begin{cases}xy+1=5\\x+y=7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-5\\x+y=7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=5\\x+y=-7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-5\\x+y=-7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=7\\x+y=5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-7\\x+y=5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=7\\x+y=-5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-7\\x+y=-5\end{cases}}\)
(Tự tính)
Giải phương trình nghiệm nguyên: \(x^2-4xy+5y^2-16=0\)
\(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Ta xét các TH:
TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)