tìm min B = x^2+y^2-2xy+2x-2y+5-2y^2-8y+2015
Tìm GTNN \(\sqrt{x^2+y^2-2xy+2x-2y+5}+2y^2-8y+2015\)
\(\sqrt{x^2+y^2-2xy+2x-2y+5}+2y^2-8y+2015\)
\(=\sqrt{\left(x^2+y^2-2xy\right)+2\left(x-y\right)+1+4}+2\left(y^2-4y+4\right)+2007\)\(=\sqrt{\left(x-y+1\right)^2+4}+2\left(y-2\right)^2+2007\ge2007\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
C=\(\sqrt{x^2+y^2-2xy+2x-2y+5}+2y^2-8y+2015\)
ai làm đúng, nhanh, đầy đủ mình sẽ tích cho bạn đó nha ^^
Tìm min : a) \(M=x^2-2xy+2y^2-4y+2016\)
b) \(N=x^2-2xy+2x+2y^2-4y+2016\)
a)\(M=x^2-2xy+2y^2-4y+2016\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)
Dấu = khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=y\\y=2\end{cases}\)\(\Leftrightarrow x=y=2\)
Vậy MinM=2012 khi x=y=2
b)\(N=x^2-2xy+2x+2y^2-4y+2016\)
\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(x-y+1\right)^2+\left(y-1\right)^2+2014\ge2014\)
Dấu = khi \(\begin{cases}\left(x-y+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y+1=0\\y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x-y+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x-1+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=1\end{cases}\)
Vậy MinN=2014 khi x=0;y=1
TÌm min : a) \(A=9x^2-6x+5\) \(B=2x^2+2xy+y^2-2x+2y+2\)
cần cách làm ko nhỉ, mình ra kết quả sau khi đọc xông cái đề rồi
câu a là 4 nhá
câu b sai đề nhá bạn phải là 2y^2 chứ nhỉ?????
vậy nhở nhất là 0 nhỉ, nếu sửa đề đúng
Tìm x biết:
a,x^2+2y^2-2xy-2x-2xy+5=0
b,x^2+5y^2-2xy+4x-8y+5
c,y^2+2y+4^x-2^x+1+2=0
Help me please~~~~~~~~~~~~~~~~~
Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!
a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)
<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)
<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\) (1)
TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)
=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
VẬY \(\left(x;y\right)=\left(3;2\right)\)
Tìm x y biết
a)xy+3x-2y=11
b)2x^2-2xy+x-y=12
c)2xy-10y-x=13
e)xy-2y^2+8y-3x=13
f)xy-2y^2+8y-3x=13
\(a)xy+3x-2y=11\)
\(\Leftrightarrow xy+3x-2y-6=5\)
\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)
\(b)2x^2-2xy+x-y=12\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)
\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)
\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)
\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
Vì 2x+1 luôn lẻ
\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
\(c)2xy-10y-x=13\)
\(\Leftrightarrow x\left(2y-1\right)-2y.5+5=18\)
\(\Leftrightarrow x\left(2y-1\right)-5\left(2y-1\right)=18\)
\(\Leftrightarrow\left(2y-1\right)\left(x-5\right)=18\)
\(\Leftrightarrow2y-1;x-5\inƯ\left(18\right)\)
\(\RightarrowƯ\left(18\right)\in\left\{-1;1;-2;2;-3;3;-6;6;-9;9;-18;18\right\}\)
Vì 2y-1 luôn lẻ
=>2y-1 thuộc {-1;1;-3;3;-9;9}
=> Làm tương tự nhé
\(e)xy-2y^2+8y-3x=13\)
\(\Leftrightarrow xy-2y^2+2y+6y-3x-6=7\)
\(\Leftrightarrow y\left(x-2y+2\right)+3\left(-x+2y-2\right)=7\)
\(\Leftrightarrow y\left(x-2y+2\right)-3\left(x-2y+2\right)=7\)
\(\Leftrightarrow\left(x-2y+2\right)\left(y-3\right)=7\)
Tự khai triển như các câu trên.
Mình đg bận nên ko lm đc hết câu.
A= \(3+\sqrt{2x^2-4x+3}\)
B=\(\sqrt{x^2-8x+18}-12\)
C=\(\sqrt{x^2+y^2-2xy+2x-2y+5}+2y^2-8y+2015\)
ai làm đúng, nhanh, đầy đủ mình sẽ tích cho bạn đó nha ^.^
tìm Min
x2 + 2y2 + 3z2 - 2xy + 2xz - 2x -2y -8z +2002
x2 + 15y2 + xy + 8x + y +1992
1.Tìm Min
A=x^4-8xy-x^3y+x^2y^2-xy^3+y^4+1017
B=x^2+xy+y^2-3x-3y
2.Tìm Max
A=-x^2+2xy-4y^2+2x+10y+5
B= -x2 - 2y2 - 2xy + 2x - 2y -15