Tìm nghiệm của đa thức : x^2+3x-4
Tìm nghiệm của đa thức g(x)=x^2-3x-4
Tìm nghiệm của đa thức h(x)=2x^3-x^2-2x+1
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
cho đa thức
H(x)= 3x^4 - 3x^2. Hãy tìm nghiệm của đa thức H(x)
ta có: H(x)=0 <=> \(3x^4-3x^2\)=0
=> \(3x^2x^2-3x^2\)=0
=> \(3x^2\left(x^2-1\right)=0\)
=> \(\orbr{\begin{cases}3x^2=0\Rightarrow x=0\\x^2-1=0\Rightarrow x=1\end{cases}}\)
vậy x=0, x=1 là nghiệm của đa thức H(x)
Ta có: Cho H(x) = 0
=> 3x4 - 3x2 = 0
=> 3x2.(x2 - 1) = 0
=> \(\orbr{\begin{cases}3x^2=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=0\\x^2=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậyx thuộc {0; 1; -1} là nghiệm của đa thức H(x)
mik thiếu nhé, x=0, x=1, x=-1 là nghiệm của đa thức
Cho đa thức f(x) = x^2 - 3x - 4. Tìm nghiệm của đa thức f(x).
Xét f(x)=x2-3x-4=0
=>x2-4x+x-4=0
=>x(x-4)+(x-4)=0
=>(x+1)(x-4)=0=>x=4 hoặc x=-1
Kết quả là 4 nhưng mình đang tìm cách giải.
Cho các đa thức P(x) = 2x^2 - 3x -4. Q(x) = x^2 - 3x + 5 a) Tính giá trị của đa thức P(x) tại x =1 b) Tìm H(x) =P(x) - Q(x) c)Tìm nghiệm của đa thức H(x)
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
tìm nghiệm của đa thức 3x(x+1)^2-3x^2(x+2)-4
bàI 3 . Cho 2 đa thức :P(x) = \(-3x^2+x=\dfrac{7}{4}\)và Q(x) =\(-3x^2+2x-2\) .Tìm nghiệm của đa thức P(x) - Q(x)
\(P\left(x\right)-Q\left(x\right)=3x^2+x-\left(-3x^2\right)+2x-2\)
=\(-3x^2+x+3x^2-2x+2\)
=\(\left(-3x^2+3x^2\right)+\left(x-2x\right)+2\)
=-x+2
Đặt -x+2=0
=>-x=-2
=>x=2
Vậy 2 là nghiệm của đa thức P(x)-Q(x)
x^2-3x+4 Tìm nghiệm của đa thức
`x^2 - 3x + 4`
`x^2 - 3x + 4 = 0`
`<=> x^2 + 1x - 4x - 4 = 0`
`<=> x(x + 1) - 4(x + 1) = 0`
`<=> x = {4; -1}`
Vậy ...
Ta có:x2−3x+4
x2−3x+4=0
⇔x2+1x−4x−4=0
⇔x(x+1)−4(x+1)=0
⇔x={4;−1}
Vậy x={4;-1}
Cho 2 đa thức : P(x) = 3x^3 - 2x + 7 + x^2 + 7x + 8 và Q(x) = 2x^2 - 3x^3 + 4 - 3x^2 - 9
a , sắp xếp 2 đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến và chỉ rõ bậc , hệ số cao nhất hệ số tự do của mỗi đa thức
b , Tìm M(x) = P(x) + Q(x) và N(x) = P(x) - Q(x)
c , tìm nghiệm của đa thúc M(x) , chứng tỏ nghiệm đó k phải là nghiệm của đa thức N ( x)
1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1%
1 năm sau tăng: 4000x2,1%= 82 người
Số dân sau 1 năm: 4000+82=4082 người
b/ Tương tự tỉ lệ tăng: 15:1000=1,5%
Số dân sau 1 năm: 4000x1,5%+4000=4060 người
P(x)=3x^3+x^2+5x+8.Bậc 3,Hệ số cao nhất 5, hệ số tự do 8
Q(x)=3x^3-x^2-5.Bậc 3, Hệ số cao nhất 3,hệ số tự do 5
ý b cộng và trừ 2 đa thưc trên sau đó tìm nghiệm
Xét M(x)=0 suy ra...........
N(x)=5x+3
Vì 5x>_ 0hoac <_0; 3>0 suy ra 5x +3>0 suy ra N(x) k có nghiệm
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
tìm nghiệm của đa thức
3x(x+1)2-3x(x+2)-4
Cho 2 đa thức P(x)=-3x2+x+7/4 và Q(x)=-3x2+2x-2 Tìm nghiệm của đa thức P(x)-Q(x)
\(P\left(x\right)-Q\left(x\right)=\left(-3x^2+x+\frac{7}{4}\right)-\left(-3x^2+2x-2\right)\)
\(=-3x^2+x+\frac{7}{4}+3x^2-2x+2\)
\(=-x+\frac{15}{4}=0\)
\(-x=-\frac{15}{4}\)
\(x=\frac{15}{4}\)