Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thu Thảo
Xem chi tiết
Lục Thiên Hy
10 tháng 5 2018 lúc 20:41
https://i.imgur.com/CFRjx7Q.png
Nguyễn Đức Hiếu
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 14:46

\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)

\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)

Ta có:

\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)

Đẳng thức xảy ra khi và chỉ khi:

\(x^2=y^2+5=z\)

Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)

\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)

Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:

\(\left(x;y;z\right)=\left(3;2;9\right)\)

Nguyễn
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
chien Nguyen
Xem chi tiết

Ta có: \(\frac{2z-4x}{3}=\frac{3x-2y}{4}=\frac{4y-3z}{2}\)

=>\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x+12x-8y+8y-6z}{9+16+4}=0\)

=>6z-12x=0 và 12x-8y=0 và 8y-6z=0

=>12x=8y=6z

=>\(\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

=>x=2k; y=3k; z=4k(Với k∈N*)

\(200

=>\(200<\left(3k\right)^2+\left(4k\right)^2<450\)

=>\(200<25k^2<450\)

=>\(8

mà k là số nguyên dương

nên k∈{3;4}

TH1: k=3

=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)

TH2: k=4

=>\(\begin{cases}x=2\cdot4=8\\ y=3\cdot4=12\\ z=4\cdot4=16\end{cases}\)

Thao Thanh
Xem chi tiết
hilo
Xem chi tiết
dâu cute
Xem chi tiết
shiyori
4 tháng 7 2023 lúc 16:06

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: 

shiyori
4 tháng 7 2023 lúc 16:06

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: 

shiyori
4 tháng 7 2023 lúc 16:32

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là:

Trung Nguyen
Xem chi tiết
trần thành đạt
7 tháng 1 2018 lúc 22:21

A=x^3 +y^3 +z^3+ 2(x/y+z  +y/z+x  +z/x+y)  \(\ge x^3+y^3+z^3+2.\frac{3}{2}\)  (bạn vào tìm BĐT nesbit là sẽ cm cái đằng sau >= 3/2)

Áp dụng cô si \(x^3+y^3+z^3\ge3xyz=3\)

===> A\(\ge3+3=6\) khi x=y=z=1