Tìm GTNN của: \(A=2x^2+5y^2-2xy+2x+2y\)
tìm GTNN của A=2x^2 + 5y^2 -2xy +2x +2y
\(A=2x^2+5y^2-2xy+2x+2y\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(4y^2+2.2y.\frac{1}{2}+\frac{1}{4}\right)-1-\frac{1}{4}\)
\(=\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\frac{1}{2}\right)^2-\frac{5}{4}\)
Ta thấy: \(\left(x-y\right)^2\ge0;\left(x+1\right)^2\ge0;\left(2y+\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
\(\Rightarrow Min_A=-\frac{5}{4}\).
tìm GTNN của
M=2x2+5y2-2xy+2y+2x
\(M=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+3y^2-2\)
\(M=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2-2\ge-2\)
tìm GTNN của biểu thức
a)B= 2x^2-2xy+5y^2+5
b)C= 5x^2+5y^2+8xy+2y-2x+2020
c)D= 5x^2+y^2+z^2-4x-2xy-z-1
tìm GTNN của A=2x^2 + 5y^2 -2xy +2x +2y
A=2x2+5y2 -2xy+2x+2y
<=> A=(x2+2xy+y2)+(2x+2y)+1+(x2-4xy+4y2)-1
<=> A=(x+y)2 +2(x+y)+1 +(x-2y)2 -1
<=> A=(x+y+1)2 +(x-2y)2-1
=> GTNN của A=-1 dấu = xảy ra khi x=\(-\dfrac{2}{3}\) ;y=\(\dfrac{-1}{3}\)
Tìm GTNN
A= 2x^2 + 5y^2 -2xy +2y + 2x.
\(A=2x^2+5y^2-2xy+2y+2x\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4xy+4y^2\right)-1\)
\(=\left(x+y+1\right)^2+\left(x-2y\right)^2-1\)
Ta thấy :(x + y +1)2 ≥ 0 ∀ x,y
(x - 2y)2 ≥ 0 ∀ x,y
⇒ (x + y +1)2 +(x - 2y)2 ≥ 0 ∀ x,y
⇔(x + y +1)2 +(x - 2y)2 -1 ≥ -1 ∀ x,y
⇔ A ≥ -1 ∀ x,y
Vậy GTNN của A là -1 \(\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-1}{3}\end{matrix}\right.\)
Tìm GTNN của biểu thức sau:
F= 2x2 -2xy +5y2 +5
G= 5x2 + 8xy + 5y2 -2x-2y
Tìm GTNN:
a) B= x2 + 2y2 - 2xy - 4y + 5
b) C= 2x2 - 2xy + 5y2 +5
Tìm GTLN của biểu thức:
-2x^2 - y^2 - 2xy + 4x + 2y + 2
Tìm GTNN của biểu thức:
x^2 - 4xy + 5y^2 + 10x - 22y + 27
Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)
\(-A=2x^2+y^2+2xy-3x-2y-2\)
\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)
\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)
Mà \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-4\)
\(\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Đặt \(B=x^2-4xy+5y^2+10x-22y+27\)
\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)
\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)
\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
Cho ba số x, y z thoả mãn 2xy+2x-5z=0. Tìm GTNN của A= x^2+2y^2+2xy+8/5y+z+2
\(2xy+2x-5z=0\Rightarrow5z=2xy+2x\Rightarrow z=\frac{2}{5}xy+\frac{2}{5}x\)
\(A=x^2+2y^2+2xy+\frac{8}{5}y+z+2\)
\(A=x^2+2y^2+2xy+\frac{8}{5}y+\frac{2}{5}xy+\frac{2}{5}x+2\)
\(A=x^2+2y^2+\frac{12}{5}xy+\frac{2}{5}x+\frac{8}{5}y+2\)
\(A=x^2+\left(\frac{6y}{5}\right)^2+\left(\frac{1}{5}\right)^2+2.\frac{6}{5}xy+\frac{2}{5}x+\frac{12y}{25}+\frac{14}{25}y^2+\frac{28y}{25}+\frac{14}{25}+\frac{7}{5}\)
\(A=\left(x+\frac{6y}{5}+\frac{1}{5}\right)^2+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\ge\frac{7}{5}\)
\(\Rightarrow A_{min}=\frac{7}{5}\) khi \(\left\{{}\begin{matrix}x=1\\y=-1\\z=0\end{matrix}\right.\)