M=(3/căn 1+a +căn 1-a):(3/căn 1-a+1)
rút gọn M
Cho biểu thức
M= a^2 +2/a^3+1 +a+1/a^2+a+1-1?a-1
a) Rút gọn M
b)Tính M khi
a=Căn 7+4 căn 3 + căn 7-4 căn 3
c)Tìm giá trị của a để M =1/5
M= (1/1-căn a - 1/1+căn a ) × (1/ căn a -1)
A) rút gọn M
đk : x >= 0 ; x khác 1
\(M=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{\sqrt{a}+1}\right)\left(\dfrac{1}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}+1-1+\sqrt{a}}{1-a}\left(\dfrac{1}{\sqrt{a}-1}\right)=\dfrac{2\sqrt{a}}{\left(1-a\right)\left(\sqrt{a}-1\right)}\)
Rút gọn (1/căn (a-2) + 1/căn(a+3)) x (1-3/căn (a))
bài 1rút gọn bt a, 2 căn 10 - 5 trên 4 - căn 10 b, (2/3 căn 3) - (1/4 căn 18) + (2/5 căn 2) - 1/4 căn 12 bài 2:c/m các đẳng thức : [căn x + căn y trên căn x - căn y) - ( căn x - căn y trên căn x + căn y) : căn xy trên x-y =4 bài 3: cho B={[2 căn x trên căn x +3] + [ căn x trên căn x - 3] - 3[ căn x +3] trên x-9} : { [ 2 căn x -2 trên căn x -3] -1} a, rút gọn b, tìm x để P<-1 Mọi ng giúp mk nhé
Rút gọn biểu thức
A= căn x+1 B=4 căn x/x+4 A=x-căn x+1
A=3 /2 căn x A=3/căn x+3
A=1-căn x A=x-2 căn x-1
\(A=\sqrt{x}+1\) (đã thu gọn)
\(B=\dfrac{4\sqrt{x}}{x+4}\) (đã thu gọn)
\(A=x-\sqrt{x}+1=\sqrt{x}\cdot\sqrt{x}-\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}-1\right)+1\)
\(A=\dfrac{3}{2\sqrt{x}}\) (đã thu gọn)
\(A=\dfrac{3}{\sqrt{x}+3}\) (đã thu gọn)
\(A=1-\sqrt{x}\) (đã thu gọn)
\(A=x-2\sqrt{x}-1=\sqrt{x}\left(\sqrt{x}-2\right)-1\)
bài 1 : tính , rút gọn
a, 4 căn 3a -3 căn 12a +6 căn a phần 3 - 2 căn 20a
b, 1+ căn 17 1 - căn 7
--------------------------- + ----------------------------
căn 2 +căn 4 + căn7 căn 2 - căn 4-căn7
a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)
\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
rút gọn
A =[1/1+căn(7-căn 24) -1/căn ( 7+căn 24 -1]:(căn 7-căn 3)
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
1 / rút gọn :
a /Căn 4+2 căn 3 - căn 3 + 1
b/ căn 3 -2 căn 2 + 2 căn 2-5
\(3333333\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}3\)