x/y=2/7 và -3x+5y=58
tìm hai số x, y biết:
1/ -2x=5y và x+y=30
2/ 3x=5y và x+y=40
3/ 4x=5y và 3x-2y=35
4/ x:2=y:(-5) và x-y=7
5/ \(\frac{x}{19}\)=\(\frac{y}{21}\) và 2x-y=34
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
bạn kia làm đúng rồi
k tui nha
thank
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
Xác định m để hai pt sau tương đương
\(\left\{{}\begin{matrix}3x+5y=7\\2x-y=6\end{matrix}\right.\) và\(\left\{{}\begin{matrix}3x+5y=7\\x-\dfrac{1}{2}y=m\end{matrix}\right.\)
Từ hệ thứ 2: \(\left\{{}\begin{matrix}3x+5y=7\\2x-y=2m\end{matrix}\right.\)
So sánh với hệ thứ nhất, ta thấy 2 hệ tương đương khi và chỉ khi \(2m=6\)
\(\Leftrightarrow m=3\)
B1
a)2-3x/x-2=-7/5
b)2x3x-405=3x-1
c)x-1/2=y-2/5=z-3/4 và 2x+3y-z=50
d3x=y,5y=4z và 6x+7y+8z=456
a: \(\Leftrightarrow-15x+10=-7x+14\)
=>-8x=4
hay x=-1/2
\(a,\dfrac{2-3x}{x-2}=-\dfrac{7}{5}\left(x\ne2\right)\\ \Leftrightarrow14-7x=10-15x\\ \Leftrightarrow8x=-4\Leftrightarrow x=-2\left(tm\right)\\ c,\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{5}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{2\cdot2+5\cdot3-4}=\dfrac{45}{15}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=6\\y-2=15\\z-3=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=17\\z=15\end{matrix}\right.\\ d,\Leftrightarrow\dfrac{x}{1}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{4}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{6x+7y+8z}{24+84+120}=\dfrac{456}{228}=2\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=24\\z=30\end{matrix}\right.\)
x+3/5=y-2/3=z-1/7 và 3x-5y+7z=86
Áp dụng t/c dtsbn:
\(\dfrac{x+3}{5}=\dfrac{y-2}{3}=\dfrac{z-1}{7}=\dfrac{3x+9}{15}=\dfrac{5y-10}{15}=\dfrac{7z-7}{49}=\dfrac{3x-5y+7z+9+10-7}{15-15+49}=\dfrac{86+12}{49}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x+3=2.5=10\\y-2=2.3=6\\z-1=2.7=14\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=10-3=7\\y=6+2=8\\z=14+1=15\end{matrix}\right.\)
Tìm x , y biết :
a, 3x = 5y và xy = 60
b, 4x = 5y và x2 - y2 = 9
c, x : 3 = y : 7 và xy = 21
d, 2x = 9y và xy = 72
\(a,3x=5y\)và \(xy=60\)
\(3x=5y\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Leftrightarrow\frac{x^2}{25}=\frac{xy}{15}=\frac{y^2}{9}\)
\(\Leftrightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{25}=4\\\frac{y^2}{9}=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=100\\y^2=36\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm10\\y=\pm6\end{cases}}\)
Vậy \(\left(x,y\right)\in\left\{\left(-10,-6\right);\left(10,6\right)\right\}\)
\(b,4x=5y\)và \(x^2-y^2=9\)
\(4x=5y\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)
\(\Leftrightarrow\frac{x^2}{25}=\frac{y^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{9}{9}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{25}=1\\\frac{y^2}{16}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=25\\y^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm5\\y=\pm4\end{cases}}}\)
Vậy \(\left(x,y\right)\in\left\{\left(-5,-4\right);\left(5,4\right)\right\}\)
\(c,x:3=y:7\)và xy = 21
\(x:3=y:7\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{xy}{21}=\frac{y^2}{49}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{49}=\frac{21}{21}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{9}=1\\\frac{y^2}{49}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=9\\y^2=49\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm3\\y=\pm7\end{cases}}}\)
Vậy \(\left(x,y\right)\in\left\{\left(-3,-7\right);\left(3,7\right)\right\}\)
\(d,2x=9y\)và xy = 72
\(2x=9y\)
\(\Leftrightarrow\frac{x}{9}=\frac{y}{2}\)
\(\Leftrightarrow\frac{x^2}{81}=\frac{xy}{18}=\frac{y^2}{4}\)
\(\Leftrightarrow\frac{x^2}{81}=\frac{y^2}{4}=\frac{72}{18}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{81}=4\\\frac{y^2}{4}=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=324\\y^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm18\\y=\pm4\end{cases}}}\)
Vậy \(\left(x,y\right)\in\left\{\left(-18,-4\right);\left(18,4\right)\right\}\)
Bài 1 :
a. Cho x + y = 4 và x^2 + y^2 = 10 . Tính x^3 + y^3
b . Cho x - y = 4 và x^2 + y^2 = 58 . Tính x^3 - y^3
Bài 2 :
Cho x + y = 10 . Tính giá trị của các biểu thức :
a. A = 5x^2 - 7x + 5y^2 - 7y + 10xy - 112
b. B = x^3 + y^3 - 3x^2 - 2y^2 + 2xy(x+y ) - 6xy - 5(x+y)
Tìm x,y biết x+3/5= y-2/3=z-1/7 và 3x-5y+7z=86
đặt x+3/5=y-2/3=z-1/7=k
=> x=5k-3 ; y=3k+2 ; z=7k+1
ta có:
3(5k-3)-5(3k+2)+7(7k+1)=86
15k-9-15k-10+49k+7=86
49k-12=86
49k=98
k=2
ta có: x=2x5-3=7
y=2x3+2=8
z=2x7+1=15
Bài tập 2. Tìm hai số x, y biết:
a)
x 5
=
y 2
và 3x−2y = −55;
b)
x 3
=
y 2
và 2x + 5y = 48;
c) −2x = 5y và x + y = 30;
d) 3x = 4y và 2x + 3y = 34.
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)