Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Vân
Xem chi tiết
Tường Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 4 2022 lúc 20:20

a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

\(\widehat{CAE}=\widehat{KAE}\)

Do đó: ΔACE=ΔAKE

Suy ra: AC=AK và EC=EK

=>AE là đường trung trực của CK

b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)

nên ΔEAB cân tại E

hay EA=EB

TV Cuber
7 tháng 4 2022 lúc 20:26

 Xét ΔACE \ và ΔAKE  ta có

cạnh AE chung

\(\widehat{EAC}=\widehat{EAK}\)

=> ΔACE=ΔAKE(c.h-g.n)

=> AC=AK và EC=EK (cặp cạnh - nhau tg ứng)

=>AE là đường trung trực của CK

 Xét ΔEAB ta có

\(\widehat{BAE}=\widehat{ABE}\)

=> ΔEAB cân tại E

=>EA=EB

 

đại lâm nguyễn
Xem chi tiết

a: XétΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

\(\widehat{CAE}=\widehat{KAE}\)

Do đó: ΔACE=ΔAKE

=>EC=EK

=>E nằm trên đường trung trực của CK(1)

Ta có: ΔACE=ΔAKE

=>AC=AK

=>A nằm trên đường trung trực của CK(2)

Từ (1) và (2) suy ra AE là đường trung trực của CK

=>AE\(\perp\)CK

b: Ta có: ΔCAB vuông tại C

=>\(\widehat{CAB}+\widehat{CBA}=90^0\)

=>\(\widehat{CBA}=90^0-60^0=30^0\)

Ta có: AE là phân giác của góc CAB

=>\(\widehat{CAE}=\widehat{BAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)

nên ΔEAB cân tại E

Ta có: ΔEAB cân tại E

mà EK là đường cao

nên K là trung điểm của AB

=>KA=KB

c: Ta có: EB=EA

EA>AC(ΔAEC vuông tại C)

Do đó: EB>AC

d: Gọi giao điểm của BD và AC là H

Xét ΔHAB có

AD,BC là các đường cao

AD cắt BC tại E

Do đó: E là trực tâm của ΔHAB

=>HE\(\perp\)AB

mà EK\(\perp\)AB

và HE,EK có điểm chung là E

nên H,E,K thẳng hàng

=>AC,BD,KE đồng quy tại H

Trương Văn Tùng
Xem chi tiết
Nguyễn Ngọc Quỳnh
6 tháng 2 2022 lúc 22:05

a)Vì AE là phân giác của góc BAC nên góc EAB=góc EBA

=> tg EAB cân tại E mà có EK là đg cao nên EK đồng thời là trung tuyên nên AK=BK

b)Xét tg ABC vuông tại C và tg BAD vuông tại D có

   AB chung

   ABC=BAD=30 độ

=> tg BAD=tg ABC(ch-gn)

=>AD=BC

le thi phuong
Xem chi tiết
Hằng Dương Thị
Xem chi tiết
Cô Hoàng Huyền
26 tháng 2 2018 lúc 13:49

Em tham khảo câu a, b, c tại đây nhé.

Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath

d) Ta thấy EB = AE

Mà theo quan hệ giữa đường vuông góc với đường xiên thì AC < AE

Vậy nên AC < EB.

Chi Chi
Xem chi tiết
Edogawa Conan
17 tháng 7 2019 lúc 15:18

C A K B E D

Cm: a) Xét t/giác ACE và t/giác AKE

có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)

   AE : chung

 \(\widehat{CAE}=\widehat{KAE}\) (gt)

=> t/giác ACE = t/giác AKE (ch - gn)

=> AC = AK ; EC = EK (các cặp cạnh t/ứng)

Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK

   +) EC = EK (cmt) => E thuộc đường trung trực của CK

Mà A \(\ne\)E => AE là đường trung trực của CK

=> AE \(\perp\)CK

b) Xét t/giác ABC có góc C = 900

=> \(\widehat{A}+\widehat{ABC}=90^0\)

=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)

Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)

=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E

=> AE = EB

=> AK = KB (quan hệ giữa đường xiên và hình chiếu)

(có thể xét qua 2 t/giác AEK và t/giác BEK)

c) Xét t/giác EKB có góc EKB = 90 độ

=> EB > KB (ch > cgv)

Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)

=> EB > AC 

d) Ta có: AC \(\perp\)BC \(\equiv\)C

     KE\(\perp\)AB \(\equiv\)K

      BD \(\perp\)AD \(\equiv\)D

=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)

Trương Thanh Long
17 tháng 7 2019 lúc 15:23

A B C E K D 1 2 1

a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)

\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).

b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.

c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).

d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác). 

Sooyoon
Xem chi tiết
Duc Nguyen
6 tháng 3 2023 lúc 9:11

a) Xét ΔACE và ΔAKE có:

\(\widehat{ACE}=\widehat{AKE}=90^0\)

AE chung

\(\widehat{CAE}=\widehat{KAE}\) (AE là tia phân giác \(\widehat{BAC}\) mà K ϵ AB ⇒ AE là tia phân giác \(\widehat{KAC}\) )

⇒ ΔACE = ΔAKE (cạnh huyền - góc nhọn)

⇒ AC = AK (2 cạnh tương ứng)

b) Xét ΔABC có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\) (Tổng 3 góc trong tam giác)

\(60^0+\widehat{ABC}+90^0=180^0\)

\(150^0+\widehat{ABC}=180^0\)

\(\widehat{ABC}=180^0-150^0\)

\(\widehat{ABC}=30^0\)

\(\Rightarrow\widehat{KBE}\left(K\in AB,E\in BC\right)\)

\(\widehat{BAC}=60^0\Rightarrow\widehat{KAC}=60^0\left(K\in AB\right)\)

mà AE là tia phân giác \(\widehat{KAC}\) 

\(\Rightarrow\widehat{KAE}=\dfrac{\widehat{KAC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Rightarrow\widehat{KBE}=\widehat{KAE}=30^0\)

Vì ΔKEB và ΔKEA là hai tam giác vuông

⇒ \(\widehat{KEB}+\widehat{KBE}=\widehat{KEA}+\widehat{KAE}=90^0\) (Tổng hai góc nhọn trong tam giác vuông)

\(\Rightarrow\widehat{KEB}=\widehat{KEA}\)

Xét ΔKEB và ΔKEA có:

\(\widehat{BKE}=\widehat{AKE}=90^0\)

AK chung

\(\widehat{KEB}=\widehat{KEA}\)

⇒ ΔKEB = ΔKEA (cạnh góc vuông - góc nhọn kề) ⇒ KB = KA (hai cạnh tương ứng) mà CA = KA ⇒ CA = KB ⇒ CA + CA = KB + KA ⇒ 2AC = AB (đpcm) c) Ta có: \(\widehat{KAE}+\widehat{EAC}=\widehat{KAE}\) (hai góc kề nhau) \(30^0+\widehat{EAC}=60^0\) \(\widehat{EAC}=60^0-30^0\)

\(\widehat{EAC}=30^0\)

Vì ΔAEC là tam giác vuông

\(\widehat{AEC}+\widehat{EAC}=90^0\)

\(\widehat{AEC}+30^0=90^0\)

\(\widehat{AEC}=90^0-30^0=60^0\)

\(\Rightarrow\widehat{BKE}>\widehat{AEC}\left(90^0>60^0\right)\)

⇒ EB > AC (quan hệ góc cạnh tam giác)

binh luong thi loc
Xem chi tiết