Cho tam giác ABC vuông tại A kẻ phân giác BE( E thuộc AC). Kẻ AH vuông góc với BC( H thuộc BC). M là giao điểm của tia BA và HE.
So sánh BC với MH.
Help me!!
Thanks.🌷🌷🌷
Cho tam giác ABC vuông tại A. Kẻ phân giác BE(E thuộc BC). M là giao điểm của tia BA và tia HE.
1. So sánh BC với MH
Help me !!!!!!!!!!!!!!
Thanks 🌷🌷🌷🌷🌷
Tia HE ở đâu đấy bạn. Sao lại kẻ phân giác BE( E thuộc BC)
Nhần đề bài à ???
Xét \(\Delta BAE\) và \(\Delta BHE\) có
\(\widehat{A_1}=\widehat{H_1}\left(=90^0\right)\\ BEchung\\ \widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\Delta BAE=\Delta BHE\left(ch-gn\right)\\ \Rightarrow AE=HE\\ \Rightarrow BA=BH\)
Xét \(\Delta AEM\) và \(\Delta HEC\) có
\(\widehat{A_2}=\widehat{H_1}\\ AE=HE\\ \widehat{E_1}=\widehat{E_2}\\ \Rightarrow\Delta AEM=\Delta HEC\left(c.g.c\right)\\ \Rightarrow AM=HC\)
Có: \(BA+AM=BM\) (điểm A nằm giữa B và M)
Có: \(BH+HC=BC\) (điểm H nằm giữa B và C)
Mà \(BA=BH;AM=HC\)
\(\Rightarrow BM=BC\)
Xét \(\Delta BHM\) vuông tại H có: BM là cạnh huyền
\(\Rightarrow BM>MH\)
Mà \(BM=BC\Rightarrow BC>MH\)
Vậy....
Cho tam giác ABC vuông tại A. Kẻ phân giác BE (E thuộc Ac). Kẻ EH vuông góc BC (H thuộc BC), M là giao điểm của tia BA và tia HE. Chứng minh rằng:
a) Tam giác ABE = Tam giác HBE
b) EM = EC
c) So sánh BC với MH
a) Ta có ^BEA = 90 - ^ ABE
^BEH = 90 - ^EBH
mà ^ABE = ^EBH ( do BE là tia phân giác)
=> ^BEA=^BEH
Xét tam giác ABE và Tam giác HBE có
^ABE=^BEH (gt)
BE chung
^BEA=^BEH (cmt)
=> tam giác ABE=Tam giác HBE
b) chỉ cần chứng minh BE là đườn trug tuyến là xog
cho tam giác ABC vuông tại A kẻ phân giác BE ( E thuộc AC ) kẻ EH vuông góc BC ( H thuộc BC ) M là giao điểm của tia BA và tia HE .cmr
a) tam giác ABE = tam giác HBE
b) EM =EC
c) so sanh BC với MH
Cho tam giác abc vuông tại a kẻ đường phân giác Be (e thuộc ac )Kẻ AH vuông góc với BC (H thuộc BC) Chứng minh
a, tam giác Abe bằng tam giác HEBb ,be là đường trung trực của ABc,Gọi K là giao điểm của BA và EH so sánh EKvà EHd, BE vuông góc KC
giải giùm mình nhanh với ạ mình đang cần gấp
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
EB chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH; EA=EH
=>EB là trung trực của AH
c: EA=EH
mà EA<EK
nên EH<EK
d: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
mà BE là phân giác
nen BE vuông góc KC
bạn có thể cho mh xem hình được k
Cho tam giác ABC vuông tại A;kẻ tia phân giác BE của góc B, (E thuộc AC).Kẻ EH vuông góc với BC,(H thuộc BC).Gọi K là giao điểm của BA và HE.Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b)AH // KC
c) AE < EC
giải giùm mình nhanh với ạ mình đang cần gấp
Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi M là giao điểm của AB và HE , chứng minh rằng :
a , Tam giác ABE = tam giác HBE
b, EM=EC
c,So sánh BC với MH
a) Xét tam giác ABE vuông tại A và ta giác HBE vuông tại H
có: BE là cạnh chung
góc ABE = góc HBE (gt)
\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)
b) ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)
=> AE = HE ( 2 cạnh tương ứng)
Xét tam giác AEM vuông tại A và tam giác HEC vuông tại H
có: AE = HE ( cmt)
góc AEM = góc HEC ( đối đỉnh)
\(\Rightarrow\Delta AEM=\Delta HEC\left(cgv-gn\right)\)
=> EM = EC ( 2 cạnh tương ứng)
c) Gọi BE cắt CM tại K
ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)
=> AB = HB ( 2 cạnh tương ứng) (1)
ta có: \(\Delta AEM=\Delta HEC\) ( chứng minh phần b)
=> AM = HC ( 2 cạnh tương ứng) (2)
Từ (1);(2) => AB + AM = HB + HC
=> BM = BC (*)
Xét tam giác BMH vuông tại H
có: BM > MH ( quan hệ cạnh huyền, cạnh góc vuông) (**)
Từ (*), (**) => BC>MH
mk ko bít kẻ hình trên này, sorry bn nha!
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC). Trên BC lấy điểm D sao cho BD=BA.
a. CMR: Tia AD là phân giác góc HAC
b. Kẻ DK vuông góc AC (K thuộc AC). CMR: Tam giác AHD = tam giác AKD
c. So sánh AC - AH với BC - AB
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC). Trên BC lấy điểm D sao cho BD=BA.
a. CMR: Tia AD là phân giác góc HAC
b. Kẻ DK vuông góc AC (K thuộc AC). CMR: Tam giác AHD = tam giác AKD
c. So sánh AC - AH với BC - AB
cho tam giác ABC có góc A = 90 độ kẻ BM là tia phân giác của góc B(M thuộc AC) kẻ MH vuông góc BC ( H thuộc BC ) gọi N là giao điểm của điểm BA và HM. Chứng minh rằng a) AM = MH. b) so sánh AM và MC . c) MN = MC
a) Xét ΔAMB vuông tại A và ΔHMB vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)(BM là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔAMB=ΔHMB(Cạnh huyền-góc nhọn)
Suy ra: AM=HM(Hai cạnh tương ứng)