\(\left(780^2-220^2\right):\left(125^2+150.125+75^2\right)\)
Tính nhanh
a,\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
b,\(B=\left(20^2+18^2+...+2^2\right)-\left(19^2+17^2+....+3^2+1^2\right)\)
c,\(C=\frac{780^2-220^2}{125^2+150.125+75^2}\)
d,\(D=2.\left(a+5\right).\left(a+4\right)-\left(a+5\right)^2-\left(a^2-9a-17\right)\)với a=99
a/ A = 1002 - 992 + 982 -...+22 - 12
= (1002 - 992) + (982 - 972) +...+ (22 - 12)
= 199 + 195 + 191 + ... + 1
= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050
b/ Y chang câu a luôn nha
c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)
\(=\frac{560.1000}{200^2}=14\)
d/ 2(a + 4)(a + 5) - (a + 5)2 - (a2 - 9a - 17)
= 17a + 32 = 17(a + 1) + 15 = 1700 + 15 = 1715
\(I\)Tính nhanh
\(a.127^2+146.127+73^2\)
\(b.9^8.2^8\left(18^4-1\right)\left(18^4+1\right)\)
\(c.100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(d.\frac{780^2-220^2}{125^2+150.125+75^2}\)
\(II.\)Rút gọn các biểu thức
\(x^2\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
1272 + 146.127 + 732
= 1272 + 2 . 73 .127 + 732
= (127 + 73 ) 2
= 200 2
Bài 1: Tính nhanh:
a) \(127^2+146.127+73^2\)
b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)
c) \(100^2-99^2+98^2-97^2+...+2^2-1\)
d) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)
Bài 2 : So sánh:
a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)và \(B=2^{32}\)
b) \(C=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)và \(D=3^{32}-1\)
Bài 1:
a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)
b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(18^8-\left(18^8-1\right)=1\)
\(c,100^2-99^2+98^2-97^2+...+2^2-1\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)
áp dụng công thức Gauss ta đc đáp án là:10100
d, mk khỏi ghi đề dài dòng:
\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:
\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)
\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)
\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)
1c,
\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)
Tính Nhanh:
\(B=\frac{780^2-220^2}{125^2+150.125+75^2}\)
\(B=\frac{780^2-220^2}{125^2+150.125+75^2}\)\(=\frac{\left(780+220\right).\left(780-220\right)}{\left(125+75\right)^2}\)\(=\frac{1000.560}{200^2}\)\(=\frac{560000}{40000}=14\)
bài 1: tính giá trị của các biểu thức sau:
A = \(x^2\)- \(4y^2\) tại x = 1,856; y = -0,928
B = \(\left(x^4-y^4\right)\) : \(\left(x^2+y^2\right)\) tại x = 2003 ; y= 2004
bài 2: tính nhanh:
A = \(1,6^2\) - \(\left(1,24^2-24,8.0,024+0,24^2\right)\)
B = \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)
C = \(\left(100^2+98^2+96^2+...+2^2\right)\) - \(\left(99^2+97^2+...+3^2+1^2\right)\)
A = x 2x2 - 4 và 24và2 tại x = 1.856; y = -0,988
B = ( x 4 - y 4 )(x4-và4) : ( x 2 + y 2 )(x2+và2) tại x = 2003 ; y= 2004
A= chắc sai đề
B=( x 4 - y 4 )(x4-và4) : ( x 2 + y 2 )
=(x^2+y^2).(x^2-y^2)/(x^2+y^2)
=x^2-y^2
=(x-y)(x+y)
thay số =(2003-2004)(2003+2004)=-4007
2
phần a chắc lại có vấn đề
B=(780^2-220^2)/125^2+150.125+75^2
=(780-220)(780+220)/(125+75)^2
=560.1000/200^2
7/5
c=1002 - 992 + 982 - 972 +....+ 22 - 1
=(100-99)(100+99)........(2+1)(2-1)
=100+99+...+1
=5050
Tính nhanh :
A=100^2+98^2+96^2+....+2^2 - 99^2-97^2-95^2-....-1^2
B= 780^2-220^2/125^2+75^2+150.125
\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+...+2+1\)
\(=\left(100+1\right).\frac{100-1}{2}=\frac{101.99}{2}=\frac{9999}{2}\)
Tính nhanh:
7802 - 2202
1252 + 150.125 + 752
Bạn hãy click vào trong câu hỏi tương tự nhé !
Tính nhanh giá trị các biểu thức sau
a. \(127^2+146\times127+73^2\)
b.\(9^8\times2^8-\left(18^4-1\right)\times\left(18^4+1\right)\)
c.\(100^2-99^2+98^2-97^2+...+2^2-1^2\)
d. \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\)
e. \(\dfrac{780^2-220^2}{125^2+150\times125+75^2}\)
a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)
c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)
\(=\dfrac{100\left(100+1\right)}{2}=5050\)
d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)
\(=\dfrac{20\left(20+1\right)}{2}=210\)
e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)
\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)
Tính nhanh :
a) ( 202 + 182 + 162 + ... + 42 ) - ( 192 + 172 + 152+ ... + 12 )
b) \(\frac{780^2-220^2}{125^2+150.125+75^2}\)