tím a nguyên sao cho \(M=\frac{a^2+3}{a-1}\)nhận gt nguyên
tím a nguyên sao cho \(M=\frac{a^2+3}{a-1}\)nhận gt nguyên
1Tìm các số nguyên a,b thõa mãn \(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
2 tím số nguyên m sao cho \(\sqrt{m^2+m+1}\) là số nguyên
1. Cho a;b;c>0 tìm Min A=abc biết
\(\frac{1}{a+1}+\frac{35}{35+2b}\le\frac{4c}{57+4c}\)
2. Tìm m;n nguyên dương sao cho m2+n2=p (p là số nguyên tố) và m3+n3-4 chia hết cho p.
1. Tìm các số nguyên tố a,b,c sao cho a.b.c=3(a+b+c)
2. Tìm số nguyên tố p sao cho 2p+1 là lập phương của 1 số nguyên tố
3. Cho a,b,c >0 . Cm \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho BT M=\(\frac{a+1}{\sqrt{a}}+\frac{a\sqrt{a}-1}{a-\sqrt{a}}+\frac{a^2-a\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)với a>0, a khác 1
a) CMR: M>4
b) với những giá trị nào của a thì bt N=\(\frac{6}{M}\)nhận gt nguyên
a) \(M=\frac{a+1}{\sqrt{a}}+\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{a\sqrt{a}\left(\sqrt{a}-1\right)+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)
\(M=\frac{a+1}{\sqrt{a}}+\frac{a+\sqrt{a}+1}{\sqrt{a}}+\frac{\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-a\sqrt{a}}\)
\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)}\)
\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{a-\sqrt{a}+1}{\sqrt{a}}\)
\(M=\frac{3a+3}{\sqrt{a}}\)
Xét \(M-4=\frac{3a+3}{\sqrt{a}}-4=\frac{3a-4\sqrt{a}+3}{\sqrt{a}}=\frac{3\left(\sqrt{a}-\frac{2}{3}\right)^2+\frac{5}{3}}{\sqrt{a}}>0\forall x\in TXĐ\)
Vậy \(M>4.\)
b) \(N=\frac{6}{M}=\frac{6}{\frac{3a+3}{\sqrt{a}}}=\frac{2\sqrt{a}}{a+1}=\frac{2}{\sqrt{a}+\frac{1}{\sqrt{a}}}\)
Để N nguyên thì \(\sqrt{a}+\frac{1}{\sqrt{a}}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Áp dụng bất đẳng thức Cosi cho hai số dương, ta có \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\Rightarrow\sqrt{a}+\frac{1}{\sqrt{a}}=2\)
\(\sqrt{a}+\frac{1}{\sqrt{a}}=2\Leftrightarrow a=1\) (Vô lý)
Vậy không tồn tại giá trị của a để N nguyên.
chị quản lí làm sai rùi
\(M=\frac{a+1}{\sqrt{a}}+\frac{a\sqrt{a}-1}{a-\sqrt{a}}+\frac{a^2-a\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)
a) cm M>4
b) với những gt nào của a thì biểu thức N=5/M nhận gt nguyên
A=\(\left(\frac{x^3+1}{x^2-1}-\frac{x^2-1}{x-1}\right):\left(x+\frac{x}{x-1}\right)\)
a)Rút gọn
b)Tìm x để A=3
c)Tìm x nguyên sao cho A nhận giá trị nguyên
a, \(\left(\frac{x^3+1}{x^2-1}-\frac{x^2-1}{x-1}\right):\left(x+\frac{x}{x-1}\right)\)
\(=\left(\frac{x^3+1}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x\left(x-1\right)}{x-1}+\frac{x}{x-1}\right)\)
\(=\left(\frac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x\left(x-1\right)+x}{x-1}\right)\)
\(=\left(\frac{\left(x+1\right)\left[x^2-x+1-x^2+1\right]}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x^2}{x-1}\right)\)
\(=\frac{\left(x+1\right)\left(2-x\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{x^2}=\frac{2-x}{x^2}\)
b, Ta có : A = 3 hay \(\frac{2-x}{x^2}=3\)
\(3x^2=2-x\Leftrightarrow3x^2+x-2=0\)
\(\Leftrightarrow3x^2+3x-2x-2=0\Leftrightarrow\left(x+1\right)\left(3x-2\right)=0\Leftrightarrow x=-1;\frac{2}{3}\)
a,\(A=\left(\frac{x^3+1}{x^2-1}-\frac{x^2-1}{x-1}\right)\div\left(x+\frac{x}{x-1}\right)\)
\(=\left(\frac{x^3+1}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x^2-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\div\left(\frac{x\left(x-1\right)}{x-1}+\frac{x}{x-1}\right)\)
\(=\left(\frac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right)\div\left(\frac{x\left(x-1\right)+x}{\left(x-1\right)}\right)\)
\(=\left(\frac{\left(x+1\right)\left(x^2-x+1-x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\right)\div\left(\frac{x^2}{x-1}\right)\)
\(=\left(\frac{\left(x+1\right)\left(2-x\right)}{\left(x-1\right)\left(x+1\right)}\right)\div\frac{x^2}{x-1}\)
\(=\frac{\left(x+1\right)\left(2-x\right)}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{x^2}\)
\(=\frac{\left(x+1\right)\left(2-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)x^2}=\frac{2-x}{x^2}\)
Cho biểu thức A = \(\left(1-\frac{4}{x+2}\right):\left(1+\frac{1}{x-3}\right)\)
a) Rút gọn A
b) Tìm x nguyên để A nhận giá trị nguyên
c) Tìm x để A > 0
a) \(ĐKXĐ:\hept{\begin{cases}x\ne-2\\x\ne3\\x\ne2\end{cases}}\)
\(A=\left(1-\frac{4}{x+2}\right):\left(1+\frac{1}{x-3}\right)\)
\(\Leftrightarrow A=\frac{x-2}{x+2}:\frac{x-2}{x-3}\)
\(\Leftrightarrow A=\frac{x-3}{x+2}\)
b) Để A nguyên
\(\Leftrightarrow x-3⋮x+2\)
\(\Leftrightarrow x+2-5⋮x+2\)
\(\Leftrightarrow5⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1;-7;3\right\}\)
Vậy để A nguyên \(\Leftrightarrow x\in\left\{-3;1;-7;3\right\}\)
c) Để A > 0
\(\Leftrightarrow\frac{x-3}{x+2}>0\)
\(\Leftrightarrow1-\frac{5}{x+2}>0\)
\(\Leftrightarrow\frac{5}{x+2}< 0\)
\(\Leftrightarrow x+2< 0\)(vì 5 > 0)
\(\Leftrightarrow x< -2\)
Vậy để A > 0 \(\Leftrightarrow x< -2\)
1)tìm các số nguyên tố a,b,c sao cho \(^{a^{c-b}}\)+c và \(c^a\)+b đều là số nguyên tố ***************************2)tìm các số nguyên tố a,b,c sao cho a<b<c và b-a, c-b, c-b+a cũng là số nguyên tố ****************************************3)tìm tất cả các số nguyên dương m, n sao cho :a)\(3^m\)- n! = 1 b)\(3^m\) - n! =2***************************************4)cho tong : A= \(\frac{1}{2^3+3}\)+\(\frac{1}{3^3+4}\)+\(\frac{1}{4^3+5}\)+...+\(\frac{1}{2018^3+2019}\).so sánh A với\(\frac{1}{6}\)********************************************5)tìm tất cả các số nguyên n > hoặc = 3 sao cho có thể diền các số thực vào các ô của bảng vuông n*n thỏa mãn đồng thời 2 điều kiện sau: a, tổng các số trong 1 hình vuông 2*2 bất kì là một số dương . 2)tổng các số trong 1 hình vuông 3*3 bất kì là một số âm
Cho biểu thức: \(A=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\left(x>0;x\ne4\right)\)
Rút gọn biểu thức A
Tìm x sao cho A nhận giá trị là một số nguyên