Chứng mình rằng không tồ tại số tự nhiên n thoả mãn: 2^n + 1 chia heets cho 7
a) Tìm số nguyên tố p thoả mãn \(2^p+1⋮p\)
b) Chứng minh rằng không có số tự nhiên n nào thoả mãn \(2^n+1⋮7\)
a. Ta có: \(2^p+1=\left(2^p-2\right)+3\)
Mà theo định lý Ferma nhỏ: \(2^p-2⋮p\Rightarrow3⋮p\Rightarrow p=3\)
b.
- Với \(n=3k\Rightarrow2^n+1=2^{3k}+1=8^k+1\)
Mà \(8\equiv1\left(mod7\right)\Rightarrow8^k+1\equiv2\left(mod7\right)\Rightarrow\) ko chia hết cho 7
- Với \(n=3k+1\Rightarrow2^n+1=2^{3k+1}+1=2.8^k+1\)
\(2.8^k+1\equiv3\left(mod7\right)\Rightarrow\) ko chia hết cho 7
- Với \(n=3k+2\Rightarrow2^n+1=2^{3k+2}+1=4.8^k+1\)
\(4.8^k+1\equiv5\left(mod7\right)\Rightarrow\) không chia hết cho 7
Vậy \(2^n+1\) ko chia hết cho 7 với mọi n
Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng có vô số số tự nhiên n thoả mãn n.2^n - 1 chia hết cho p.
Ta có \(2^{p-1}\equiv1\left(\text{mod }p\right)\)
Ta có \(n.2^n\equiv m\left(p-1\right).2^{m\left(p-1\right)}\left(\text{mod }p\right)\Rightarrow n.2^n\equiv-m\equiv1\left(\text{mod }p\right)\)
\(\Rightarrow m=kp-1\left(k\in N\text{*}\right)\)
Vậy với \(n=\left(kp-1\right)\left(p-1\right)\left(k\in N\text{*}\right)\) thì \(n.2^n-1⋮p\)
Chứng tỏ rằng với mọi số tự nhiên n thì tích [n+3].[n+6] chia heets cho 2
1.
Chứng minh
(a). Giả sử n là 1 số lẻ ta có ̃n+3 là 1 số chẵn và n + 6 là 1 số lẻ => (n +3).(n + 6) là 1 số chẵn.
(b). Giả sử n là 1 số chẵn ta có n + 3 là 1 số lẻ và n + 6 là 1 số chẵn => (n + 3).(n + 6) là 1 số chẵn.
(c). Với mọi số tự nhiên n ta có (n + 3).(n + 6) > 18.
Từ (a),(b),(c) ta có thể kết luận rằng với mọi số tự nhiên n thì tích (n + 3).(n + 6) luôn chia hết cho 2.
2.
Nếu n = 2k thì n + 6 = 2k + 6 chia hết cho 2
Nếu n = 2k + 1 thì n + 3 = 2k + 4 chia het cho 2
Vậy (n+3) . (n+6) chia hết cho 2
Với x lẻ thì x + 3 chẵn, tích ( x + 3 ) ( x + 6 ) là chẵn nên chia hết cho 2.
Với x chẵn thì x + 6 chẵn, tích ( x + 3 ) ( x + 6 ) là chẵn nên chia hết cho 2.
Vậy ( x + 3 ) ( x + 6 ) luôn chia hết cho 2 với mọi số tự nhiên x.
n lẻ \(\Rightarrow\)n+3 chia hết cho 2
n chẵn \(\Rightarrow\)n+6 chia hết cho 2
Vậy với mọi số tự nhiên thì (n+3)(n+6) đều chiia hết cho 2
Giúp em với ạ.
Cho 361 số tự nhiên a1, a2, a3, a361 thoả mãn điều kiện:
\(\dfrac{1}{\sqrt{a_1}}\) + \(\dfrac{1}{\sqrt{a_2}}\) + \(\dfrac{1}{\sqrt{a_3}}\) + ... + \(\dfrac{1}{\sqrt{a_{361}}}\) = 37
Chứng minh rằng trong 361 số tự nhiên đó, tồn tại ít nhất 2 số bằng nhau
Phản chứng: giả sử trong 361 số đó, không có 2 số nào bằng nhau
Không mất tính tổng quát, giả sử:
\(0< a_1< a_2< ...< a_{361}\)
\(\Rightarrow\left\{{}\begin{matrix}a_1\ge1\\a_2\ge2\\...\\a_{361}\ge361\end{matrix}\right.\)
Đặt \(S=\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{361}}}\)
\(\Rightarrow S\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{361}}\)
\(\Rightarrow S\le1+2\left(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{361}}\right)\)
\(\Rightarrow S< 1+2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{360}+\sqrt{361}}\right)\)
\(\Rightarrow S< 1+2\left(\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}+\sqrt{1}\right)\left(\sqrt{2}-\sqrt{1}\right)}+...+\dfrac{\sqrt{361}-\sqrt{360}}{\left(\sqrt{361}+\sqrt{360}\right)\left(\sqrt{361}-\sqrt{360}\right)}\right)\)
\(\Rightarrow S< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{361}-\sqrt{360}\right)\)
\(\Rightarrow S< 1+2\left(\sqrt{361}-1\right)=37\)
Trái với giả thiết \(S=37\)
\(\Rightarrow\) Điều giả sử là sai hau trong 361 số tự nhiên đó tồn tại ít nhất 2 số bằng nhau
chứng minh rằng không tồn tại n là số tự nhiên thỏa mãn 2014^2014+1 chia hết cho n^2+2012n
Giả sử n là số tự nhiên thỏa mãn n(n+1) không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chính phương
Giả sử n là số tự nhiên thỏa mãn n(n + 1) + 7 không chia hết cho 7. Chứng minh rằng 4n^3 − 5n − 1 không là số chính phương
Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1)+7 không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chinh phương
T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12
Dấu bằng xảy ra khi và chỉ khi {a2+b2+c2=3abca=b=c⇔3a2=3a3⇔a=1⇒a=b=c=1
Giả sử n là số tự nhiên thỏa mãn n(n + 1) + 7 không chia hết cho 7. Chứng minh rằng 4n
3 − 5n − 1 không là số chính phương.
Xl vì táu ngu :<
Giả sử 4n3-5n-1 là SCP
Có 4n3-5n-1=(n+1)(4n2-4n-1)
Gọi (n+1; 4n2-4n-1)=d ( d thuộc N)
=> n+1 chia hết cho d và 4n2-4n-1 chia hết cho d
Mà 4n2-4n-1 =(n+1)(4n-8) + 7
=> 7 chia hết cho d
=> d = 7 hoặc 1
Có n(n+1) +7 không chia hết cho 7 => n(n+1) không chia hết cho 7 => n+1 không chia hết cho 7 => d khác 7
=> d=1
=> (n+1; 4n2-4n-1) =1
mả 4n3-5n-1=(n+1)(4n2-4n-1) là SCP
=> n+1 và 4n2-4n-1 đồng thời là SCP
=> 4n+4 và 4n2-4n-1 là SCP
=> 4n +4 + 4n2-4n-1 = 4n^2 +3 là SCP
mà 4n2+3 chia 4 dư 3
=> Vô lý
=> Giả sử sai
=> đccm
một số chính phương + một số chính phương chắc gì đã bằng 1 số chính phương khác, VD 4+9=13, 13 có là SCP đâu