Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Zek Tim
Xem chi tiết
Nguyễn Văn An
16 tháng 7 2018 lúc 21:05

ta có đặt P=  \(\sqrt{a^2+b^2}.\sqrt{c^2+d^2}=\sqrt{a^2c^2+b^2c^2+a^2d^2+b^2d^2}\)

=> P^2= \(a^2c^2+b^2c^2+a^2d^2+b^2d^2=a^2d^2+b^2c^2+2abcd+a^2c^2+b^2d^2-2abcd\)

=> P^2= \(\left(ad+bc\right)^2+\left(ac+bd\right)2\ge\left(ad+bc\right)^2\)

=> \(P^2\ge\left(ad+bc\right)^2=>P\ge ad+bc\)

loancute
Xem chi tiết
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 20:46

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+ac+bc}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\) Chứng minh tương tự ta được:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+a}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+a}+\dfrac{b}{b+c}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)=\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\left(1+1+1\right)=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

Nguyễn Việt Lâm
6 tháng 3 2021 lúc 20:48

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Nguyễn An
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 2 2020 lúc 8:20

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}\le\sqrt{2\left(\frac{2}{a}+\frac{2}{b}\right)}=2\sqrt{\frac{a+b}{ab}}\)

Tương tự: \(\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le2\sqrt{\frac{b+c}{bc}}\) ; \(\sqrt{\frac{2}{c}}+\sqrt{\frac{2}{a}}\le2\sqrt{\frac{c+a}{ca}}\)

Cộng vế với vế ta sẽ có điều phải chứng minh

Khách vãng lai đã xóa
My Nguyễn
Xem chi tiết
Trà My
25 tháng 10 2016 lúc 22:23

Không làm mất tính tổng quát của bài toán, giả sử \(a\ge b\ge c\)(1)

Có \(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}=\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

Từ (1) => \(\hept{\begin{cases}\frac{2}{a}\le\frac{1}{a}+\frac{1}{b}\\\frac{2}{b}\le\frac{1}{b}+\frac{1}{c}\\\frac{2}{c}\le\frac{1}{a}+\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{\frac{2}{a}}\le\sqrt{\frac{1}{a}+\frac{1}{b}}\\\sqrt{\frac{2}{b}}\le\sqrt{\frac{1}{b}+\frac{1}{c}}\\\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{a}+\frac{1}{c}}\end{cases}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}\)

Ta có đpcm

Đào Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 1 2022 lúc 16:09

BĐT này không đúng

Ví dụ: với \(a=b=c=0,1\)

Nguyễn Minh Trang
Xem chi tiết
Kun ZERO
Xem chi tiết