cho f(x)=(x+2)(x+3)(x+4)(x+5)+1. Chứng minh rằng: f(x) luôn là số chính phương với mọi x ∈ Z
Cho f(x) = ax^2 + bx + c, biết f(0), f(1), f(2) đều là các số nguyên. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x thuộc Z
Ta có f(0)=a.0
2
+b.0+c=c=>c là số nguyên
f(1)=a.1
2
+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2
2
+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
Cho f(x) = (x+2)(x+3)(x+4)(x+5) + 1. CMR f(x) luôn có giá trị chính phương với mọi x nguyên
\(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1\)
\(f\left(x\right)=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+1\)
\(f\left(x\right)=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2-1+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2\Leftrightarrowđpcm\)
ƒ (x)=(x+2)(x+3)(x+4)(x+5)+1
ƒ (x)=(x+2)(x+5)(x+3)(x+4)+1
ƒ (x)=(x2+5x+2x+10)(x2+4x+3x+12)+1
ƒ (x)=(x2+7x+10)(x2+7x+12)+1
ƒ (x)=(x2+7x+11−1)(x2+7x+11+1)+1
ƒ (x)=(x2+7x+11)2−1+1
ƒ (x)=(x2+7x+11)2⇔đpcm
Cho f(x) = (x+1)(x+2)(x+3)(x+4)(x+5) + 1. CMR f(x) luôn có giá trị chính phương với mọi x nguyên
Bạn ơi hình như đề cho thừa thì phải
Vì nếu bạn thay x=2 thì f(x) ko cp
Sửa lại đề rùi nói cho mk , mk làm cho nha
cmr a(a+1)(a+2)(a+4)(a+5)(a+6)+36 là số chính phương với mọi a nguyên
Cho đa thức f(x) = x4 + 6x3 +11x2 + 6x
a. Phân tích đa thức thành nhân tử
b. Chứng minh với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương
f(x) = x4 + 6x3 +11x2 + 6x
\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)
\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)
\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)
\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b)Ta có
\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)
\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)
\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)
\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)
Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương
cho đa thức \(F\left(x\right)=\frac{1}{5}x^5+\frac{1}{3}x^3+\frac{7}{15}x+2008\)
chứng minh rằng F(x) luôn nhận giá trị nguyên với mọi x thuộc Z
Cho f(x)=ax\(^2\)+bx+c. Biết f(0),f(1),f(2)là số nguyên. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x.
Ta có f(0)=a.02+b.0+c=c
=> c là số nguyên
f(1)=a.12+b.1+c=a+b+c=(a+b)+c
Vì c là số nguyên nên a+b là số nguyên (1)
f(2)=a.22+b.2+c=2(2a+b)+c
=>2.(2a+b) là số nguyên
=> 2a+b là số nguyên (2)
Từ (1) và (2) =>(2a+b)-(a+b) là số nguyên =>a là số nguyên => b cũng là số nguyên
Vậy f(x) luôn nhân giá trị nguyên với mọi x
Ta có f(0)=a.0\(^2\)+b.0+c=c=>c là số nguyên
f(1)=a.1\(^{^2}\)+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2\(^2\)+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
bn Nguyễn Minh Tuấn ơi
tại sao 2(2a+b) nguyên thì 2a+b nguyên vậy
Bài 1: Chứng minh rằng với mọi số nguyên x, y thì
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương
Bài 1:
Giải hệ phương trình: \(\left\{{}\begin{matrix}xy+2=2x+y\\2xy+y^2+3y=6\end{matrix}\right.\)
Bài 2:
cho đa thức: \(f\left(x\right)=x^4+6x^3+11x^2+6x\)
a, Phân tích f(x) thành phân tử
b, chứng minh rằng với mọi giá trị nguyên của x thì f(x)+1 luôn có giá trị là số chính phương
Câu 5:
Cho đường tròn (O), đường dính AB cố định. Điểm I nằm giữa A và O sao cho AI=\(\dfrac{2}{3}\) AO. Kẻ dây MN vuông góc với AB tại I. gọi C là một điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E
a, Chứng minh tứ giác IECB nội tiếp
b, Chứng minh AM\(^2\)=AE.AC
c, Chứng minh AE.AC-AI.BI=AI\(^2\)
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU!!
Bài 1:
\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow xy-y+2-2x=0\)
\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Với \(x=1\). Thay vào (2) ta được:
\(2y+y^2+3y=6\)
\(\Leftrightarrow y^2+5y-6=0\)
\(\Leftrightarrow y^2+y-6y-6=0\)
\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)
Với \(y=2\). Thay vào (2) ta được:
\(2x.2+2^2+3.2=6\)
\(\Leftrightarrow4x+4+6=6\)
\(\Leftrightarrow x=-1\)
Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)
Bài 2:
\(f\left(x\right)=x^4+6x^3+11x^2+6x\)
\(=x\left(x^3+6x^2+11x+6\right)\)
\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)
\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)
\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!