CMR: n5-n ⋮ 240 với n là STN lẻ.
CMR: \(n^5-n⋮240\) với mọi n lẻ
Lời giải:
Ta có: \(n^5-n=n(n^4-1)=n(n-1)(n+1)(n^2+1)\)
CM \(n^5-n\vdots 3\)
Ta thấy \(n,n+1,n-1\) là ba số nguyên liên tiếp nên chắc chắn tồn tại một số chia hết cho $3$
\(\Rightarrow n(n-1)(n+1)\vdots 3\Leftrightarrow n^5-n\vdots 3(1)\)
CM \(n^5-n\vdots 5\)
+) \(n\equiv 0\pmod 5\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 5\)
+) \(n\equiv 1\pmod 5\Rightarrow n-1\equiv 0\pmod 5\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 5\)
+) \(n\equiv 2\pmod 5\Rightarrow n^2\equiv 4\pmod 5\Rightarrow n^2+1\equiv 0\pmod 5\)
\(\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 5\)
+) \(n\equiv 3\pmod 5\Rightarrow n^2\equiv 9\pmod 5\Rightarrow n^2+1\equiv 0\pmod 5\)
\(\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 5\)
+) \(n\equiv 4\pmod 5\Rightarrow n+1\equiv 0\pmod 5\)
\(\Rightarrow n^5-n=n(n+1)(n-1)(n^2+1)\vdots 5\)
Do đó, \(n^5-n\vdots 5(2)\)
CM \(n^5-n\vdots 16\)
Vì $n$ lẻ nên đặt \(n=4k+1;4k+3\) Khi đó:\(\left[{}\begin{matrix}n^2=16k^2+1+8k\\n^2=16k^2+9+24k\end{matrix}\right.\Rightarrow\) \(n^2\equiv 1\pmod 8\)
\(\Rightarrow n^2-1\vdots 8\)
Mà $n$ lẻ nên $n^2+1\vdots 2$
Do đó \(n^5-n=n(n^2-1)(n^2+1)\vdots 16(3)\)
Từ \((1),(2),(3)\Rightarrow n^5-n\vdots (16.3.5=240)\) (đpcm)
cmr n là stn lẻ khi n^3+1 không phải số chính phương
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)
vì n chẵn nên đặt n=2k
\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)
vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2
=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16
\(n^3+4n=n^3-4n+8n\)
đặt n=2k
=>\(8\left(k-1\right)k\left(k+1\right)+16k\)
mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
Câu 1: So sánh 2^3^2^3 với 3^2^3^2
Câu 2: cmr: vs mọi n là stn và n>1 thì 5^2^n + 2 có chữ số tận cùng là 7
Câu 3: tìm n là số nguyên sao cho n^2 + n - 17 là bội của bội của n+5
Câu 4: cmr: hiệu các bình phương của 2 số lẻ liên tiếp thì chia hết cho 8
CMR: A = n*(n+1) * (2*n + 1) chia hết cho 6 với n là stn
CMR: n2 + n + 1 không chia hết cho 9 với mọi n là STN
n2 + 11n + 39 không chia hết cho 49 với mọi n là STN
CM: n3+(n+1)3+(n+2)3 chia hết cho 36 với mọi n là stn, số lẻ?
n3 + ( n + 1 )3 + ( n + 2 )3
= ( 3n + 1 + 2 )3
= ( 3n + 3 )3
= 27n + 9
= 36n chia hết cho 9
Vậy n3 + ( n + 1 )3 + ( n + 2 )3
n^3+(n+1)^3+(n+2)^3
=(n+n+1+n+2)^3
=(3n+3)^3
=27n+9
Ma 36 chia het cho 9
=>dpcm
n^3 + ( n+ 1 ) ^ 3 + ( n+ 2 ) ^ 3
= ( n + n + 1 + n + 2 ) ^ 3
= ( 3n + 3 ) ^ 3
= 72n + 9
mà 36 chia hết cho 9
=> dpcm
CMR n5-n chia hết cho 30 với mọi số tự nhiên n
TK ử đây : https://hoc247.net/hoi-dap/toan-8/chung-minh-n-5-n-chia-het-cho-30-faq417269.html