Lời giải:
Ta có: \(n^5-n=n(n^4-1)=n(n-1)(n+1)(n^2+1)\)
CM \(n^5-n\vdots 3\)
Ta thấy \(n,n+1,n-1\) là ba số nguyên liên tiếp nên chắc chắn tồn tại một số chia hết cho $3$
\(\Rightarrow n(n-1)(n+1)\vdots 3\Leftrightarrow n^5-n\vdots 3(1)\)
CM \(n^5-n\vdots 5\)
+) \(n\equiv 0\pmod 5\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 5\)
+) \(n\equiv 1\pmod 5\Rightarrow n-1\equiv 0\pmod 5\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 5\)
+) \(n\equiv 2\pmod 5\Rightarrow n^2\equiv 4\pmod 5\Rightarrow n^2+1\equiv 0\pmod 5\)
\(\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 5\)
+) \(n\equiv 3\pmod 5\Rightarrow n^2\equiv 9\pmod 5\Rightarrow n^2+1\equiv 0\pmod 5\)
\(\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 5\)
+) \(n\equiv 4\pmod 5\Rightarrow n+1\equiv 0\pmod 5\)
\(\Rightarrow n^5-n=n(n+1)(n-1)(n^2+1)\vdots 5\)
Do đó, \(n^5-n\vdots 5(2)\)
CM \(n^5-n\vdots 16\)
Vì $n$ lẻ nên đặt \(n=4k+1;4k+3\) Khi đó:\(\left[{}\begin{matrix}n^2=16k^2+1+8k\\n^2=16k^2+9+24k\end{matrix}\right.\Rightarrow\) \(n^2\equiv 1\pmod 8\)
\(\Rightarrow n^2-1\vdots 8\)
Mà $n$ lẻ nên $n^2+1\vdots 2$
Do đó \(n^5-n=n(n^2-1)(n^2+1)\vdots 16(3)\)
Từ \((1),(2),(3)\Rightarrow n^5-n\vdots (16.3.5=240)\) (đpcm)