Ôn tập phép nhân và phép chia đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Như Quỳnh

CMR:\(10^n+18n-28⋮27\) với mọi n thuộc N

Akai Haruma
27 tháng 8 2019 lúc 17:20

Lời giải:

Ta xét các TH sau:

TH1: $n$ chia hết cho $3$: $n=3k$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k}+18.3k-28\)

Ta thấy:

\(10^3\equiv 1\pmod {27}\Rightarrow 10^{3k}\equiv 1^k\equiv 1\pmod {27}\)

\(18.3k=27.2k\equiv 0\pmod {27}\)

\(28\equiv 1\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 1+0-1\equiv 0\pmod {27}(1)\)

TH2: $n$ chia 3 dư $1$: $n=3k+1$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k+1}+18(3k+1)-28=10^{3k}.10+54k-10\)

Ta thấy:

\(10^{3k}\equiv 1\pmod {27} \) (cmt) \(\Rightarrow 10^{3k}.10\equiv 10\pmod {27}\)

\(54k\equiv 0\pmod {27}\)

\(10\equiv 10\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 10-0-10\equiv 0\pmod {27}(2)\)

TH3: $n$ chia 3 dư $2$: $n=3k+2$

\(10^n+18n-28=10^{3k}.100+54k+8\equiv 100+0+8\equiv 0\pmod {27}(3)\)

Từ (1);(2);(3) suy ra $10^n+18n-28$ chia hết cho $27$ với mọi số tự nhiên $n$

Akai Haruma
30 tháng 8 2019 lúc 20:03

Lời giải:

Ta xét các TH sau:

TH1: $n$ chia hết cho $3$: $n=3k$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k}+18.3k-28\)

Ta thấy:

\(10^3\equiv 1\pmod {27}\Rightarrow 10^{3k}\equiv 1^k\equiv 1\pmod {27}\)

\(18.3k=27.2k\equiv 0\pmod {27}\)

\(28\equiv 1\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 1+0-1\equiv 0\pmod {27}(1)\)

TH2: $n$ chia 3 dư $1$: $n=3k+1$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k+1}+18(3k+1)-28=10^{3k}.10+54k-10\)

Ta thấy:

\(10^{3k}\equiv 1\pmod {27} \) (cmt) \(\Rightarrow 10^{3k}.10\equiv 10\pmod {27}\)

\(54k\equiv 0\pmod {27}\)

\(10\equiv 10\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 10-0-10\equiv 0\pmod {27}(2)\)

TH3: $n$ chia 3 dư $2$: $n=3k+2$

\(10^n+18n-28=10^{3k}.100+54k+8\equiv 100+0+8\equiv 0\pmod {27}(3)\)

Từ (1);(2);(3) suy ra $10^n+18n-28$ chia hết cho $27$ với mọi số tự nhiên $n$


Các câu hỏi tương tự
Linh Ngô
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Vũ Khánh Huyền
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Kudo shinichi
Xem chi tiết
Minatozaki Sana
Xem chi tiết
Nguyễn Trần
Xem chi tiết
Nguyễn Mary
Xem chi tiết