\(\forall x\in N\) ta có
\(B=x^3+6x^2-19x-24=\left(x-3\right)\left(x+1\right)\left(x+8\right)\)
- Nếu x chẵn thì \(\left(x+8\right)⋮2\Rightarrow B⋮2\)
- Nếu x lẻ thì \(\left(x-3\right)⋮2\Rightarrow B⋮2\)
Vậy \(B⋮2\)
Lại có \(x-3\equiv x\left(mod3\right)\) và \(x+8\equiv x+2\left(mod3\right)\)
\(\Rightarrow B=\left(x-3\right)\left(x+1\right)\left(x+8\right)\equiv x\left(x+1\right)\left(x+2\right)\) (mod3)
Mặt khác x, x+1, x+2 là 3 số tự nhiên liên tiếp nên ắt tồn tại 1 số chia hết cho 3 \(\Rightarrow\left[x\left(x+1\right)\left(x+2\right)\right]⋮3\)
Hay \(B⋮3\)
Ta có \(B⋮2\), \(B⋮3\) mà 2 và 3 là 2 số nguyên tố cùng nhau nên \(B⋮6\)