chứng minh rằng: nếu p và p2 là các số nguyên tố thì p3+2 cũng là số nguyên tố
Chứng minh rằng:
a, Nếu p và p2+8 là các số nguyên tố thì p2+2 cũng là số nguyên tố.
b, Nếu p và 8p2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố.
Chứng minh rằng:
a, Nếu p và p2+8 là các số nguyên tố thì p2+2 cũng là số nguyên tố.
b, Nếu p và 8p2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố.
a) - Do p là số nguyên tố nên p là số tự nhiên.
*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)
*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)
*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)
Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.
b) (Làm tương tự bài trên)
- Do p là số nguyên tố => p là số tự nhiên.
*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)
*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)
*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)
Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.
Chứng tỏ rằng : Nếu p ; p+2 và p+4 đều là các số
P3 +2 cũng là số nguyên tố
Lời giải:
Nếu $p\vdots 3$ thì do $p$ là snt nên $p=3$
$\Rightarrow p+2=5; p+4=7$ đều là snt (thỏa mãn).
Khi đó: $p^3+2=3^3+2=29$ là snt (đpcm)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k$ tự nhiên.
$\Rightarrow p+2=3k+1+2=3k+3=3(k+1)\vdots 3$. Mà $p+2>3$ với mọi $p$ nguyên tố nên $p+2$ không thể là snt (trái với yêu cầu đề - loại)
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k$ tự nhiên.
$\Rightarrow p+4=3k+2+4=3k+6=3(k+2)\vdots 3$. Mà $p+4>3$ với mọi $p$ nguyên tố nên $p+4$ không thể là snt (trái với yêu cầu đề - loại)
Vậy ta có đpcm.
chứng minh rằng :8p-1 là số nguyên tố thì 8p+1 là hợp số
tìm p;q là số nguyên tố sao cho 7p+qvaf pq+11 đều là số nguyên tố
tìm các số nguyên tố a,b,c sao cho: 2a+3b+6c=78
tìm số nguyên tơố p sao cho các số sau đều là số nguyên tố:
a)p+2 và p+10
b) p+10 và p+20
cho M và M^2+2-1 đều là số nguyên tố. chứng minh rằng M^3+2 cũng là 1 số nguyên tố
Nếu p là số nguyên tố lớn hơn 5 và 2p+1 cũng là số nguyên tố thì 4p+1 có phải là số nguyên tố không?
Nếu p là số nguyên tố lớn hơn 5 và 2p+1 cũng là số nguyên tố thì 4p+1 có phải là số nguyên tố không?
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì $$ chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó $$ chia hết cho 3.
Vậy 4p+1 là hợp số,
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó chia hết cho 3.
Vậy 4p+1 là hợp số,
Nếu p là số nguyên tố lớn hơn 5 và 2p+1 cũng là số nguyên tố thì 4p+1 có phải là số nguyên tố không?
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì \(2p+1=2\left(3k+1\right)+1=6k+3\) chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó \(4p+1=4\left(3k+2\right)+1=12k+9\) chia hết cho 3.
Vậy 4p+1 là hợp số,
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì $2p+1=2\left(3k+1\right)+1=6k+3$2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó $4p+1=4\left(3k+2\right)+1=12k+9$4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
CMR Nếu p là số nguyên tố >3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
vì p là SNT lớn lơn 3 => p có dạng: 3k+1 hoặc 3k+2( k thuộc N*)
TH1: p=3k+1
=> 2p+1=2.(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 ( TM)
TH2: p=3k+2
=> 4p+1=4.(3k+2)+1=12k+8+1=12k+9 chia hết cho 3(TM)
vậy nếu p là SNT lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
Chứng minh rằng:
a, p va p2+8 là các số nguyên tố thì p2+2 là số nguyên tố
b, p và 8p2+1 là các số nguyên tố thì 2p+1 là số nguyên tố
Mình đg cần gấp, mong các bạn giúp đỡ
a ) Với p = 3 , p là số nguyên tố và \(p^2+8=3^2+8=17\)cũng là số nguyên tố => p = 3 thỏa mãn đề bài
Xét với p > 3 , ta biểu diễn :
\(p^2+8=\left(p^2-1\right)+9=\left(p-1\right)\left(p+1\right)+9\)
Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 ắt sẽ có một số chia hết cho 3.
Vì p là số nguyên tố , p > 3 nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3. Suy ra tích (p - 1)(p + 1) chia hết cho 3. Lại có 9 chia hết cho 3
\(\Rightarrow p^2+8\)chia hết cho 3. (vô lí vì \(p^2+8\)là số nguyên tố lớn hơn 3)
Vậy p = 3 \(\Rightarrow p^2+2=3^2+2=11\)là số nguyên tố (đpcm)
b) Với p = 3 thì \(8p^2+1\)là số nguyên tố.
Với p là số nguyên tố, p > 3 :
Ta có : \(8p^2+1=8\left(p^2-1\right)+9=8\left(p-1\right)\left(p+1\right)+9\)
Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 , ắt sẽ tìm được một số chia hết cho 3
Vì p là số nguyên tố, p > 3 , nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3
Suy ra tích (p - 1)(p + 1) chia hết cho 3 . Lại có 9 chia hết cho 3
=> 8p2 + 1 chia hết cho 3 (vô lí vì 8p2 + 1 là số nguyên tố lớn hơn 3)
Vậy p = 3 . Suy ra 2p + 1 = 7 là số nguyên tố. (đpcm)