Bài 3 : Chứng minh rằng các số A = 61000 - 1 và B = 61001 + 1 đều là bội số của 7
Chứng minh rằng các số A = 61000 - 1 và B = 61001 + 1 đều là bội số của 7
Ta có:6=-1 (mod 7) => 6^1000=1(mod 7) => 6^1000-1 chia hết cho 7
Vậy A là bội của 7
Từ 6^1000=1(mod 7) => 6^1001=6(mod 7), mà 6=-1(mod 7)
=> 6^1001=-1(mod 7) => 6^1001+1 chia hết cho
Vậy B là bội của 7
Bài 1: Cho 25 số nguyên, biết tích của 3 số bất kì đều là 1 số dương. Chứng minh rằng tất cả 25 số đó đều là số nguyên dương.
Bài 2: Cho m, n là các số nguyên dương. Biết:
A = 2 + 4 + 6 +...+ 2m / m
B = 2 + 4 + 6 +...+ 2n / n
Biết A<B, hãy so sánh m và n.
Bài 3: Cho S = 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99.
a) Chứng minh rằng S là bội của -20.
b) Tính S từ đó suy ra 3^100 chia 4 dư 1.
Bài 4: Cho a thuộc Z so sánh:
a) 35( a - 5 ) và 31( a - 5 )
b) 21( 7 – a ) và -25( 7 – a )
Ai làm nhanh mà đúng nhất mình TICK cho! Nhanh lên nhé, mai mình phải nộp rùi!!!
Bài 1: Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Tuyết Mai - Toán lớp 6 - Học toán với OnlineMath
Đầu tiên, chúng ta xét xem (16a+17b)(17a+16b) chia hết cho 11 hay không. Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.
Vì 11 là một số nguyên tố, nên theo tính chất của phép nhân, để m là một bội số của 11, thì mỗi thành phần của m cũng phải là một bội số của 11.
Ta thấy rằng 272a^2 và 272b^2 đều chia hết cho 11, vì 272 chia hết cho 11. Vì vậy, ta chỉ cần chứng minh rằng 528ab chia hết cho 11 để kết luận m là một bội số của 11.
Để chứng minh điều này, ta sử dụng tính chất căn bậc hai modulo 11. Ta biết rằng căn bậc hai của 11 là 5 hoặc -5 (vì 5^2 = 25 ≡ 3 (mod 11)). Vì vậy, ta có:
(16a+17b)(17a+16b) ≡ (5a+6b)(6a+5b) (mod 11).
Mở ngoặc, ta được:
(5a+6b)(6a+5b) ≡ 30ab + 30ab ≡ 60ab ≡ 6ab (mod 11).
Vì 6 không chia hết cho 11, nên 6ab cũng không chia hết cho 11. Do đó, ta kết luận rằng 528ab không chia hết cho 11 và m là một bội số của 11.
Tiếp theo, chúng ta cần chứng minh rằng m là một bội số của 121. Để làm điều này, ta cần chứng minh rằng m chia hết cho 121.
Một cách để chứng minh rằng m chia hết cho 121 là tìm một số tự nhiên k sao cho m = 121k. Để làm điều này, chúng ta cần tìm một số tự nhiên k sao cho (16a+17b)(17a+16b) = 121k.
Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.
Chúng ta đã chứng minh rằng m là một bội số của 11, vậy m = 11m' với m' là một số tự nhiên.
Thay thế m vào công thức m = 272a^2 + 528ab + 272b^2, ta có:
11m' = 272a^2 + 528ab + 272b^2.
Chia cả hai vế của phương trình cho 11, ta có:
m' = 24a^2 + 48ab + 24b^2.
Như vậy, m' là một số tự nhiên. Điều này cho thấy rằng m chia hết cho 121 và m là một bội số của 121.
Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, chúng ta cần tìm tổng của tất cả các số tự nhiên từ 10 đến 99 không chia hết cho 3 và 5.Để tính tổng này, chúng ta có thể sử dụng công thức tổng của một dãy số từ một số đến một số khác. Công thức này là:
Tổng = (Số lượng số trong dãy) * (Tổng của số đầu tiên và số cuối cùng) / 2,
trong đó, Số lượng số trong dãy = (Số cuối cùng - Số đầu tiên) + 1.
Áp dụng công thức này vào bài toán, ta có:
Số đầu tiên = 10, Số cuối cùng = 99, Số lượng số trong dãy = (99 - 10) + 1 = 90.
Tổng = 90 * (10 + 99) / 2 = 90 * 109 / 2 = 90 * 54,5 = 4.905.
Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 4.905.
Bài 4. 1) Cho hai số tự nhiên a và b thỏa mãn số: m=(16a+17b)(17a+16b) là một bội số của 11. Chứng minh rằng số m cũng là một bội số của 121 2) Tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5
Bài toán 1: Để chứng minh số m cũng là một bội số của 121, ta sẽ sử dụng một số tính chất của phép chia.
Ta có: m = (16a + 17b)(17a + 16b) = (17a + 16b)^2 - (ab)^2
Vì m là một bội số của 11, nên ta có thể viết m dưới dạng m = 11k, với k là một số tự nhiên.
Từ đó, ta có (17a + 16b)^2 - (ab)^2 = 11k.
Áp dụng công thức (a + b)^2 - (ab)^2 = (a - b)^2, ta có (17a + 16b + ab)(17a + 16b - ab) = 11k.
Ta có thể chia hai trường hợp để xét:
Trường hợp 1: (17a + 16b + ab) chia hết cho 11. Trường hợp 2: (17a + 16b - ab) chia hết cho 11.
Trong cả hai trường hợp trên, ta đều có một số tự nhiên tương ứng với mỗi trường hợp.
Do đó, nếu m là một bội số của 11, thì m cũng là một bội số của 121.
Bài toán 2: Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, ta cần xác định tập hợp các số thỏa mãn điều kiện trên và tính tổng của chúng.
Các số tự nhiên hai chữ số không chia hết cho 3 và 5 có dạng AB, trong đó A và B lần lượt là các chữ số từ 1 đến 9.
Ta thấy rằng có 3 chữ số (3, 6, 9) chia hết cho 3 và 2 chữ số (5, 0) chia hết cho 5. Vì vậy, số các chữ số không chia hết cho 3 và 5 là 9 - 3 - 2 = 4.
Do đó, mỗi chữ số A có 4 cách chọn và mỗi chữ số B cũng có 4 cách chọn.
Tổng tất cả các số có hai chữ số không chia hết cho 3 và 5 là 4 x (1 + 2 + 3 + ... + 9) x 4 = 4 x 45 x 4 = 720.
Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 720.
Bài 1 : tìm phân số lớn nhất ,khi chia các phân số 24/7 và 18/11 cho nó ta đều được các thương là số nguyên ?
Bài 2:tổng bình phương 3 số tự nhiên là 2596 biết rằng tỉ số giữa số thứ nhất và số thứ 2 là 2/3 giữa số thứ 2 và số thứ 3 là 5/6 tìm 3 số đó ?
Bài 3 :cho (a,b) =1 chứng minh rằng ( a.b, a+b )=1?
Giúp em bài này với !
Bài 1 : Tính giá trị biểu thức :
ax - ay + bx - by với a + b = 15, x - y = -4
Bài 2 : Chứng minh rằng nếu 2 số a, b là hai số nguyên khác 0 và a là bội của b; b là bội của a thì : a = b hoặc a = -b
Bài 3 : Tính S = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + .... + 2001 - 2002 - 2003 + 2004 + 2005
Bài 1:Tìm 2 số tự nhiên a và b biết tổng UCLN và BCNN của chúng là 15
Bài 2;Tìm x biết: 1) \(-\frac{2}{3}\left(x-\frac{1}{4}\right)=\frac{1}{3}\left(2x-1\right)\)
2)\(\frac{1}{5}.2^x+\frac{1}{3}.2^{x+1}=\frac{1}{5}.2^7+\frac{1}{3}.2^8\)
Bài 3:Tìm các số nguyên n sao cho: \(^{n^2+5n+9}\)là bội của n+3
Bài 4:Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
Bài 5:Tìm x nguyên thỏa mãn:|x+1|+|x-2|+|x+7|=5x-10
Bài 6;Tìm 3 số có tổng bằng 210, biết rằng 6/7 ST1 bằng 9/11 ST2 và 9/11 ST2 bằng 2/3 ST3
Bài 7: Tìm 2 số biết tỉ số của chứng bằng 5:8 và tích của chứng bằng 360
Mình đang cần gấp.Các bạn giúp nha
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
cái gì thế này???????????????????????????????????
mik lp 6 nhưng nhìn bài của bn mik ko hiểu j cả luôn ý
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
\(\Rightarrow2n+1=1\left(mod8\right)\)
=> n \(⋮\) 4
=> n chẵn
=> n+1 cũng là số lẻ
\(\Rightarrow n+1=1\left(mod8\right)\)
=> n \(⋮\) 8
Mặt khác :
\(3n+2=2\left(mod3\right)\)
\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)
Mà n+1 và 2n+1 là các số chính phương lẻ
\(\Rightarrow n+1=2n+1=1\left(mod3\right)\)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Vì n + 1 và 2n + 1 đêu là phân số chính phương nên đặt n+1 = k\(^2\), 2n+1 = m\(^2\)( k, m \(\in\) N)
Ta có m là số lẻ => m = 2a+1 =>m\(^2\)= 4a(a+1)+1
=>n=\(\frac{m^2-1}{2}\)=\(\frac{4a\left(a+1\right)}{2}\)=2a(a+1)
=> n chẵn =>n+1 là số lẻ =>k lẻ =>Đặt k = 2b+1 (Với b \(\in\) N) =>k\(^2\)=4b(b+1)+1
=> n=4b(b+1) =>n \(⋮\)8 (1)
Ta có k\(^2\) + m\(^2\) =3n+2=2 ( mod3)
Mặt khác k\(^2\) chia 3 dư 0 hoặc 1 ,m\(^2\)chia 3 dư 0 hoặc 1
Nên để k\(^2\)+m\(^2\) =2 (mod3) thì k\(^2\) = 1(mod3)
m\(^2\) = 1 (mod3)
=>m\(^2\)-k\(^2\)\(⋮\)3 hay (2n+1)-(n+1) \(⋮\)3 =>n \(⋮\) 3
Mà (8;3)=1
Từ (1) ; (2) và (3) => n \(⋮\) 24