Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Mai Ngọc
Xem chi tiết
Hiếu Minh
Xem chi tiết
NoPro Tú
Xem chi tiết
Trần Tuấn Hoàng
6 tháng 5 2022 lúc 19:53

-Áp dụng BĐT AM-GM ta có:

\(xy\le\dfrac{\left(x+y\right)^2}{4}\Leftrightarrow xy\le\dfrac{2^2}{4}=1\)

\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}=\dfrac{2^2}{2}=2\)

\(A=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2+2001=4x^2+4+\dfrac{1}{x^2}+4y^2+4+\dfrac{1}{y^2}+2001=4\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2009\ge4.2+2.\dfrac{1}{xy}+2009\ge8+2.\dfrac{1}{1}+2009=2019\)

\(A=2019\Leftrightarrow x=y=1\)

-Vậy \(A_{min}=2019\)

 

Vũ Đình Đức
Xem chi tiết
Trọng Lễ
Xem chi tiết
Ly Bích Nguyệt
Xem chi tiết
Thư Nguyễn Anh
Xem chi tiết
Akai Haruma
30 tháng 8 2021 lúc 9:31

Lời giải:

$2Q=2x^2+2xy+2y^2-6x-6y+3998$

$=(x^2+2xy+y^2)+x^2+y^2-6x-6y+3998$

$=(x+y)^2-4(x+y)+(x^2-2x)+(y^2-2y)+3998$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+3992$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+3992\geq 3992$

$\Rightarrow Q\geq 1996$

Vậy $Q_{\min}=1996$ khi $x+y-2=x-1=y-1=0\Leftrightarrow x=y=1$

------------------

$R=(x^2+2xy+y^2)+x^2-2x+2y+15$

$=(x+y)^2+2(x+y)+x^2-4x+15$

$=(x+y)^2+2(x+y)+1+(x^2-4x+4)+10$

$=(x+y+1)^2+(x-2)^2+10\geq 10$
Vậy $R_{\min}=10$ khi $x+y+1=x-2=0$

$\Leftrightarrow x=2; y=-3$

Hữu Sang Lê
Xem chi tiết
Hữu Sang Lê
23 tháng 1 2018 lúc 17:56

ai giúp vs

Phạm Xuân Tiến
28 tháng 12 2019 lúc 1:03

(x-2y-2)2+(y-6)2 =39-2A

A=< 39/2, max A là 39/2 khi x =14 và y =6

Khách vãng lai đã xóa
Mary Smith
Xem chi tiết
Đời Buồn Tênh
5 tháng 8 2017 lúc 16:01

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1