cho 3 số thực x,y,z>0 thoả mãn \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=1\).Tìm giá trị nhỏ nhất của biểu thức :P=\(\dfrac{y^2z^2}{x\left(y^2+z^2\right)}+\dfrac{z^2x^2}{y\left(z^2+x^2\right)}+\dfrac{x^2y^2}{z\left(x^2+y^2\right)}\)
Cho x, y, z > 0. Tìm Max \(P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+a^2+3}}\)
bài 1: rút gọn các biểu thức.
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})^2\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}(x\ge0)\)
c) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{(y-2\sqrt{y}+1)^2}{(x-1)^4}}(x\ne1,y\ne1,y>0)\)
bài 2:rút gọn và tính.
a) \(\sqrt{\dfrac{\sqrt{a}-1}{\sqrt{b}+1}:}\sqrt{\dfrac{\sqrt{b}-1}{\sqrt{a}+1}với}a=7,25;b=3,25\)
b) \(\sqrt{15a^2-8a\sqrt{15}+16}vớia=\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}\)
c) \(\sqrt{10a^2-4a\sqrt{10}+4}vớia=\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{5}{2}}\)
d) \(\sqrt{a^2+2\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}(a=\sqrt{5})\)
bài 3: rút gọn các biểu thức.
a) \(\sqrt{9(x-5)^2}(x\ge5)\)
b) \(\sqrt{x^2.(x-2)^2}(x< 0)\)
c)\(\dfrac{\sqrt{108x^3}}{\sqrt{12x}}(x>0)\)
d)\(\dfrac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}(x< 0:y\ne0)\)
ai giúp mik vs ạ, cảm ơn !
\(\left\{{}\begin{matrix}2^x+4^y=32\\xy=8\end{matrix}\right.\). Thấy \(x,y> 0\) . ÁP dụng BĐT AM-Gm t acos
\(\left(1\right)\Leftrightarrow32=2^x+2^{2y}\ge2\sqrt{2^{x+2y}}\)
\(\Rightarrow16\ge\sqrt{2^{2x+y}}\Rightarrow256\ge2^{2x+y}\)
\(\Rightarrow2^8\ge2^{2x+y}\Rightarrow8\ge2x+y\ge2\sqrt{2xy}\ge2\cdot\sqrt{2\cdot8}\)
\(=2\sqrt{16}=2\cdot4=8\)
Xảy ra khi \(x=4;y=2\) Lâm Tố Như
Làm hộ bài. KO phải Spam đợi nhận thù lao rồi xóa
đơn giản biểu thức
a \(\dfrac{3-2\sqrt{2}}{1-\sqrt{2}}\)
b \(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-y}\) (x,y >0)
c \(\dfrac{5\sqrt{16}-\sqrt{15}}{6-2\sqrt{6}}\)
d \(\dfrac{x\sqrt{x}-y\sqrt{y}}{x-y}\) ( x,y>0)
Cho x,y,z#0, và x+y+z=xyz và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)
Tính giá trị biểu thức: \(P=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
b5: giải pt ;
a, \(\sqrt{49\left(1-2x+x^2\right)}-35=0\)
b, \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
Rút gọn:
a. \(\sqrt{2a}\) \(\times\) \(\sqrt{18a}\) (a \(\ge\)0)
b. \(\sqrt{3a\times27ab^2}\)
c. 2y2 \(\times\) \(\sqrt{\dfrac{x^4}{4y^2}}\) (y < 0)
d. \(\dfrac{y}{x}\) \(\times\) \(\sqrt{\dfrac{x^2}{y^4}}\) (x > 0 ; y \(\ne\)0)
e. \(\sqrt{\dfrac{9a^2}{16}}\)
f. \(\sqrt{10.16a^2}\) (a < 0)
g. \(\sqrt{a^4}\left(3-a\right)^2\) (a \(\ge\) 3)
h. \(\sqrt{\dfrac{2a^2b^4}{98}}\)
Rút gọn biểu thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\);
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) (\(x\ge0\))
c)\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\) (\(x\ne1\), \(y\ne1\), \(y>0\)).