Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Meches ali
Xem chi tiết
Akai Haruma
1 tháng 1 lúc 23:34

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4})(1+1+1)\geq (\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})^2(1)$

$(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})(1+1+1)\geq (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2(2)$

$(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})(a+b+c)\geq (1+1+1)^2$

$\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}=9$(3)$

Từ $(1); (2); (3)$ suy ra:
$\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\geq \frac{9^4}{27}=243$
Vậy GTNN của biểu thức là 243 khi $a=b=c=\frac{1}{3}$

Đặt \(P=\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}=\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\left(a+b+c\right)^4\) (do \(a+b+c=1\))

\(P=\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\left(a+b+c\right)^4\ge3\sqrt[3]{\dfrac{1}{a^4.b^4.c^4}}.\left(3\sqrt[3]{abc}\right)^4=3^5=243\)

\(P_{min}=243\) khi \(a=b=c=\dfrac{1}{3}\)

Anhanh
Xem chi tiết
Anhanh
Xem chi tiết
nguyen xuan duong
24 tháng 2 2016 lúc 19:41

Chi biet phan 5 thoi @

      Vi 3a=5b=12suy ra a=4 ;b=2,4  ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6

Anhanh
25 tháng 2 2016 lúc 12:46

nguyen xuan duong sr minh viet nham dau bai 3a-5b=12

Anhanh
Xem chi tiết
Vương 99
Xem chi tiết
Đại tỉ tỉ
Xem chi tiết
Nguyên
Xem chi tiết
Phạm Hải Yến
Xem chi tiết
Phạm viết Trung kiên
Xem chi tiết
Phạm viết Trung kiên
Xem chi tiết