Tìm x,y để |3x+18 |+ |4y- 28| \(\le\) 0
tìm\(x,y\in z\)
|3x+18|+|4y-28|\(\le\)0
giúp mk giải bài toán này nhá
Ta có:
\(\orbr{\begin{cases}\left|3x+18\right|\ge0\\\left|4y-28\right|\ge0\end{cases}\Rightarrow\left|3x+18\right|+\left|4y-28\right|\le0}\)khi:
\(\orbr{\begin{cases}3x+18=0\\4y-28=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=-18\\4y=28\end{cases}\Rightarrow}\orbr{\begin{cases}x=-6\\y=7\end{cases}}\)
Tìm số nguyên x,y biết:B=|3x+18|+|4y-28|<hoặc=0
Ta có :
\(\left|3x+18\right|\ge0\) và \(\left|4x-28\right|\ge0\) \(\Rightarrow\) \(\left|3x+18\right|+\left|4y-28\right|\ge0\)
Mà \(\left|3x+18\right|+\left|4y-28\right|\le0\) ( đề bài cho )
\(\Rightarrow\)\(\left|3x+18\right|+\left|4y-28\right|=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+18=0\\4y-28=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=-18\\4y=28\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\y=7\end{cases}}}\)
Vậy \(x=-6\) và \(y=7\)
Ta có \(\left|3x+18\right|+\left|4y-28\right|\le0\)
Mà \(\left|3x+18\right|\ge0\forall x;\left|4y-28\right|\ge0\forall y\)
=> |3x+18|+|4y-28|=0
=> 3x+18=4y-28=0
• 3x+18=0 <=> 3x=-18 <=> x=-6
• 4y-28=0 <=> 4y=28 <=> y=7
Vậy ...
Tìm giá trị nhỏ nhất của các biểu thức:
A=|2+10|+|3y-27|+2013(với x,y là các số nguyên)
b,Tìm số nguyên x,y biết:B=|3x+18|+|4y-28|<hoặc=0
1) tính nhanh giá trị biểu thức:
a) x^2 + 4y^2 - 4xy tại x=18; y=4
b) (2x + 1)^2 + (2x - 1)^2 - 2 (1 + 2x) (1 - 2x) tại x = 100
2) tìm x biết :
a) 7x^2 -28 =0 b) 2/3x (x^2 - 4) = 0 c) 2x (3x - 5) - (5 - 3x) = 0
d) (2x - 1)^2 -25 = 0
3) phân tích các đa thức sau thành nhân tử :
a) 2(x - 3) - y (x - 3) b) x^3 + 3x^2 - 3x - 1 c) x^2 + 5xy d) x^2 - x - y^2 -y
e) x^2 - 9y^2 +2x +1 f) x^2 - 2x - 4y^2 - 4y g) 10x +15y h) x^2 - 2xy + y^2 - 4
i) 4x - 4y + x^2 - 2xy + y^2 k) x^4 - 4x^3 - 8x^2 - 8x l) x^3 + x^2 - 4x - 4
n) x^3 + x^2y - xy^2 - y^3 o) x^2 - y^2 - 2x - 2y p) x^2 - y^2 - 2x + 2y
q) 2x + 2y - x^2 - xy r) x^2 - 25 + y^2 + 2xy s) x^3 - 2x^2 + x
t) 12x^2y - 18xy^2 - 30y^2 u) 36 - 12x + x^2 v) 3x^2 - 3xy
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Cho hai số thực x y, thỏa mãn \(x^2+y^2-2x-4y-4=0\)
cm: \(-2\le x\le4\left(\forall y\in R\right)\)
tìm Min \(S=3x+4y\)
\(x^2+y^2-2x-4y-4=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2-9=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=9=0^2+3^2=0^2+\left(-3\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y-2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=0\\y-2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\y-2=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow-2\le x\le4\left(y\in R\right)\)
Ta có \(S=3x+4y\)
Mà \(x\ge-2;y\ge-1\Leftrightarrow S\ge3\cdot\left(-2\right)+4\cdot\left(-1\right)=-6-4=-10\)
Vậy GTNN của S là \(-10\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
Lời giải:
ĐKĐB $\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)-9=0$
$\Leftrightarrow (x-1)^2+(y-2)^2-9=0$
$\Rightarrow (x-1)^2=9-(y-2)^2\leq 9$
$\Rightarrow -3\leq x-1\leq 3$
$\Leftrightarrow -2\leq x\leq 4$
-------------
Đặt $x-1=a; y-2=b$ thì bài toán trở thành:
Cho $a,b$ thực thỏa mãn $a^2+b^2=9$
Tìm min $S=3a+4b+11$
Áp dụng BĐT Bunhiacopxky:
$(3a+4b)^2\leq (a^2+b^2)(3^2+4^2)=9.25$
$\Rightarrow -15\leq 3a+4b\leq 15$
$\Rightarrow 3a+4b\geq -15$
$\Rightarrow S=3a+4b+11\geq -4$
Vậy $S_{\min}=-4$ khi $x=\frac{-4}{5}; y=\frac{-1}{5}$
Tìm x,y để:
9-(3x-2)^20+(4y+3)^18 đạt GTLN
Mong dc trl ạ
Tìm các số nguyên x,y
a)/3x+18/+/4y-28/\(\le0\)
b)\(\left(x^2-4\right)\left(x^2-25\right)< 0\)
a)\(\left|3x+18\right|+\left|4y-28\right|\le0\)
Vì \(\left|3x+18\right|\ge0;\left|4y-28\right|\ge0\)
Nên PT chỉ xảy ra khi \(\left|3x+18\right|+\left|4y-28\right|=0\)
\(\Rightarrow\hept{\begin{cases}3x+18=0\\4y-28=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-6\\y=7\end{cases}}\)
Vậy để \(\left|3x+18\right|+\left|4y-28\right|\le0\) thì x=-6 và y=7
b)Mk bị liệt dấu lớn nên ko làm đc bn thông cảm nha
Ti le thuc x y ti le voi 2 3 va x+y =-15
X÷y=7÷20 y÷z=7÷3 va y-x-z=62
3/y=7/x va x+16=y
X y ti le voi 5;3 va x^2-y^2=4
5x=8y=20z va x-y-z=3
3x=2y;7y =5z va 2x+y-z=-28
2x/3=3y/4=4z/5 va 3x-4y+5z=65
Tìm x y z biết 3x=4y=5z và x+2y-3z=28
Ta có :
\(3x=4y=5z\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{3}}=\dfrac{2y}{\dfrac{1}{2}}=\dfrac{3z}{\dfrac{3}{5}}=\dfrac{x+2y-3z}{\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{3}{5}}=\dfrac{28}{\dfrac{7}{30}}=\dfrac{28.30}{7}=120\) \(\left(x+2y-3z=28\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}.120=40\\y=\dfrac{1}{4}.120=30\\z=\dfrac{1}{5}.120=24\end{matrix}\right.\)