Chứng minh rằng tổng n số lẻ bất kỳ liên tiết chia hết cho n.
Chứng minh rằng tổng n số lẻ bất kỳ liên tiếp chia hết cho n
Chứng minh rằng tổng n số lẻ bất kỳ liên tiếp chia hết cho n
Tổng của n số lẻ liên tiếp là:
1+3+…+a
Tổng trên có số số là:
(a-1):2+1=n
=>(a-1):2=n-1
=>a-1=2.(n-1)
=>a-1=2n-2
=>a=2n-2+1
=>a=2n-1
Tổng của n số lẻ liên tiếp là:
1+3+…+(2n-1)
=[(2n-1)+1].n:2
=2n.n:2
=n2 chia hết cho n
Vậy tổng của n số lẻ liên tiếp chia hết cho n
Bài 1: Chứng minh rằng tổng n số lẻ bất kỳ liên tiếp chia hết cho n
bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8
\(\left(n^2-1\right)=\left(n-1\right)\left(n+1\right)\)
Vì \(n\) lẻ \(\Rightarrow n+1\) và \(n-1\) chẵn
\(n+1-\left(n-1\right)=n+1-n+1=2\)
\(\Rightarrow n+1\) và \(n-1\) là hai số chẵn liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}n-1=2k\\n+1=2\left(k+1\right)\end{matrix}\right.\left(k\in N\right)\)
\(k+1-k=1\)
\(\Rightarrow k\) và \(k+1\) là hai số tự nhiên liên tiếp nên trong hai số \(k\) và \(k+1\) có một số chẵn
Nếu \(k\) là số chẵn:
\(\Rightarrow k=2a\left(a\in N\right)\\ \left\{{}\begin{matrix}n-1=2k=2\cdot2a=4a\\n+1=2\left(k+1\right)\end{matrix}\right.\Rightarrow\left(n-1\right)\left(n+1\right)=4a\cdot2\left(k+1\right)=8a\left(k+1\right)⋮8\)
Nếu \(k\) là số lẻ:
\(\Rightarrow k+1\) là số chẵn
\(\Rightarrow k+1=2b\left(b\in N\right)\\ \left\{{}\begin{matrix}n-1=2k\\n+1=2\left(k+1\right)=2\cdot2b=4b\end{matrix}\right.\Rightarrow\left(n-1\right)\left(n+1\right)=2k\cdot4b=8kb⋮8\)
Vậy \(\left(n^2-1\right)⋮8\left(đpcm\right)\)
bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8 :3 bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8 :3 bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8
Chứng minh rằng:
(n^2 - 1) chia hết cho 8 với n là số tự nhiên lẻ bất kỳ
1) Chứng minh rằng tổng n số tự nhiên liên tiếp chia hết cho n nếu n là số lẻ ?
2) Chứng minh tổng n số tự nhiên liên tiếp không chia hết cho n nếu n là số chẵn ?
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
chứng minh rằng trong n số tự nhiên bất kỳ luôn tồn tại một số chia hết cho n hoặc một số có tổng chia hết cho n
Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều
nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng
hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
Chứng minh rằng : Tổng của n số nguyên lẻ liên tiếp chia hết cho n
http://olm.vn/hoi-dap/question/243247.html