bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8
\(\left(n^2-1\right)=\left(n-1\right)\left(n+1\right)\)
Vì \(n\) lẻ \(\Rightarrow n+1\) và \(n-1\) chẵn
\(n+1-\left(n-1\right)=n+1-n+1=2\)
\(\Rightarrow n+1\) và \(n-1\) là hai số chẵn liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}n-1=2k\\n+1=2\left(k+1\right)\end{matrix}\right.\left(k\in N\right)\)
\(k+1-k=1\)
\(\Rightarrow k\) và \(k+1\) là hai số tự nhiên liên tiếp nên trong hai số \(k\) và \(k+1\) có một số chẵn
Nếu \(k\) là số chẵn:
\(\Rightarrow k=2a\left(a\in N\right)\\ \left\{{}\begin{matrix}n-1=2k=2\cdot2a=4a\\n+1=2\left(k+1\right)\end{matrix}\right.\Rightarrow\left(n-1\right)\left(n+1\right)=4a\cdot2\left(k+1\right)=8a\left(k+1\right)⋮8\)
Nếu \(k\) là số lẻ:
\(\Rightarrow k+1\) là số chẵn
\(\Rightarrow k+1=2b\left(b\in N\right)\\ \left\{{}\begin{matrix}n-1=2k\\n+1=2\left(k+1\right)=2\cdot2b=4b\end{matrix}\right.\Rightarrow\left(n-1\right)\left(n+1\right)=2k\cdot4b=8kb⋮8\)
Vậy \(\left(n^2-1\right)⋮8\left(đpcm\right)\)
bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8 :3 bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8 :3 bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8