\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{1^3}+...+\dfrac{1}{2^{15}}\)
Tìm số nguyên x, biết:
a) \(-4\dfrac{3}{5}\). \(2\dfrac{4}{3}\) < x < \(-2\dfrac{3}{5}\) : \(1\dfrac{6}{15}\)
b) \(-4\dfrac{1}{3}\).(\(\dfrac{1}{2}\)-\(\dfrac{1}{6}\)) < x < - \(\dfrac{2}{3}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\))
a) Ta có \(-4\dfrac{3}{5}\cdot2\dfrac{4}{3}=-\dfrac{23}{5}\cdot\dfrac{10}{3}=-\dfrac{46}{3}\) và \(-2\dfrac{3}{5}\div1\dfrac{6}{15}=-\dfrac{13}{5}\div\dfrac{7}{5}=-\dfrac{13}{7}\)
Do đó \(-\dfrac{46}{3}< x< -\dfrac{13}{7}\)
Lại có \(-\dfrac{46}{3}\le-15\) và \(-\dfrac{13}{7}\ge-2\)
Suy ra \(-15\le x\le-2\), x ϵ Z
b) Ta có \(-4\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=-\dfrac{13}{3}\cdot\dfrac{1}{3}=-\dfrac{13}{9}\) và \(-\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{2}{3}\cdot\dfrac{-11}{12}=\dfrac{11}{18}\)
Do đó \(-\dfrac{13}{9}< x< \dfrac{11}{18}\)
Lại có \(-\dfrac{13}{9}\le-1\) và \(\dfrac{11}{18}\ge0\)
Suy ra \(-1\le x\le0\), x ϵ Z
b, -4\(\dfrac{1}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)) < \(x\) < - \(\dfrac{2}{3}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\))
- \(\dfrac{13}{3}\).\(\dfrac{1}{3}\) < \(x\) < - \(\dfrac{2}{3}\).(-\(\dfrac{11}{12}\))
- \(\dfrac{13}{9}\) < \(x\) < \(\dfrac{11}{18}\)
\(x\) \(\in\) { -1; 0; 1}
a, -4\(\dfrac{3}{5}\).2\(\dfrac{4}{3}\) < \(x\) < -2\(\dfrac{3}{5}\): 1\(\dfrac{6}{15}\)
- \(\dfrac{23}{5}\).\(\dfrac{10}{3}\) < \(x\) < - \(\dfrac{13}{5}\): \(\dfrac{21}{15}\)
- \(\dfrac{46}{3}\) < \(x\) < - \(\dfrac{13}{7}\)
\(x\) \(\in\) {-15; -14;-13;..; -2}
Bài 1:
a) \(\dfrac{1}{2}\)<\(\dfrac{...}{9}\)<\(\dfrac{...}{18}< \dfrac{2}{3}\)
b) \(\dfrac{-1}{2}< \dfrac{...}{15}< \dfrac{...}{30}< \dfrac{-2}{5}\)
a) \(\dfrac{1}{2}< \dfrac{x}{9}< \dfrac{y}{18}< \dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{9}{18}< \dfrac{2x}{18}< \dfrac{y}{18}< \dfrac{12}{18}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=11\end{matrix}\right.\)
b) \(\dfrac{-1}{2}< \dfrac{x}{15}< \dfrac{y}{30}< \dfrac{-2}{5}\)
\(\Leftrightarrow\dfrac{-15}{30}< \dfrac{2x}{30}< \dfrac{y}{30}< \dfrac{-12}{30}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=-14\\y=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=-13\end{matrix}\right.\)
3. b) \(1\dfrac{13}{15}\).(0,5)2.3+(\(\dfrac{8}{15}\)-\(1\dfrac{19}{60}\)):\(1\dfrac{23}{24}\)
c) (-2)3.\(\dfrac{-1}{24}\)+(\(\dfrac{4}{5}\)-1,2):\(\dfrac{2}{15}\)
d) (\(\dfrac{-2}{5}\))2+\(\dfrac{1}{2}\).(4,5-2)-255
VÒNG 2
Bài 1: Mèo con nhanh nhẹn
\(\dfrac{1}{2}\) + \(\dfrac{1}{12}\) | 2 + \(\dfrac{1}{6}\) | \(\dfrac{1}{20}\) | 1 - \(\dfrac{1}{9}\) | |
\(\dfrac{1}{15}\) + \(\dfrac{2}{15}\) | \(\dfrac{1}{2}\) + \(\dfrac{2}{3}\) | \(\dfrac{7}{12}\) | \(\dfrac{4}{12}\) | |
\(\dfrac{9}{14}\)+ \(\dfrac{1}{14}\) | 1 + \(\dfrac{1}{6}\) | \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) | \(\dfrac{1}{3}\) - \(\dfrac{2}{9}\) | |
\(\dfrac{3}{2}\) + \(\dfrac{2}{3}\) | \(\dfrac{1}{5}\) | 1 - \(\dfrac{8}{9}\) | ||
\(\dfrac{5}{7}\) | 1 - \(\dfrac{2}{3}\) | \(\dfrac{1}{3}\) + \(\dfrac{5}{9}\) |
Bài 7: Tính
a) \(4\dfrac{2}{5}x8\dfrac{3}{4}-2\dfrac{3}{4}=...............................\)
b) \(2\dfrac{2}{3}+1\dfrac{2}{5}-\dfrac{2}{15}\)=..............................................
c) \(3\dfrac{1}{3}-2\dfrac{2}{3}+1\dfrac{5}{6}=...............................\)
Bài 7: Tính
a) \(4\dfrac{2}{5}\times8\dfrac{3}{4}-2\dfrac{3}{4}\)
\(=\dfrac{22}{5}\times\dfrac{35}{4}-\dfrac{11}{4}\)
\(=\dfrac{77}{2}-\dfrac{11}{4}\)
\(=\dfrac{143}{4}\)
b) \(2\dfrac{2}{3}+1\dfrac{2}{5}-\dfrac{2}{15}\)
\(=\dfrac{8}{3}+\dfrac{7}{5}-\dfrac{2}{15}\)
\(=\dfrac{47}{15}-\dfrac{2}{15}\)
\(=\dfrac{45}{15}=3\)
c) \(3\dfrac{1}{3}-2\dfrac{2}{3}+1\dfrac{5}{6}\)
\(=\dfrac{10}{3}-\dfrac{8}{3}+\dfrac{11}{6}\)
\(=\dfrac{2}{3}+\dfrac{11}{6}\)
\(=\dfrac{15}{6}\)
Tính hợp lí :
A = \(\dfrac{-2}{9}\) + \(\dfrac{-3}{4}\) + \(\dfrac{3}{5}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{57}\) + \(\dfrac{1}{3}\) + \(\dfrac{-1}{36}\)
B = \(\dfrac{1}{2}\) + \(\dfrac{-1}{5}\) + \(\dfrac{-5}{7}\) + \(\dfrac{1}{6}\) + \(\dfrac{-3}{35}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{41}\)
C = \(\dfrac{-1}{2}\) + \(\dfrac{3}{5}\) + \(\dfrac{-1}{9}\) + \(\dfrac{1}{127}\) + \(\dfrac{-7}{18}\) + \(\dfrac{4}{35}\) + \(\dfrac{2}{7}\)
a. Tìm a, biết: 1 - ( 5\(\dfrac{4}{9}\) + a - 7\(\dfrac{7}{18}\) ) : 15\(\dfrac{3}{4}\) = 0
b. Tính b = ( \(\dfrac{2}{15}\) + \(\dfrac{5}{3}\) - \(\dfrac{3}{5}\) ) : ( \(4\dfrac{2}{3}\) - \(2\dfrac{1}{2}\) )
a: \(1-\left(5\dfrac{4}{9}+a-7\dfrac{7}{18}\right):15\dfrac{3}{4}=0\)
=>\(\left(5+\dfrac{4}{9}+a-7-\dfrac{7}{18}\right):\dfrac{63}{4}=1\)
=>\(\left(a-2+\dfrac{1}{18}\right)=\dfrac{63}{4}\)
=>\(a-\dfrac{35}{18}=\dfrac{63}{4}\)
=>\(a=\dfrac{63}{4}+\dfrac{35}{18}=\dfrac{637}{36}\)
b: \(B=\left(\dfrac{2}{15}+\dfrac{5}{3}-\dfrac{3}{5}\right):\left(4\dfrac{2}{3}-2\dfrac{1}{2}\right)\)
\(=\dfrac{2+5\cdot5-3^2}{15}:\left(4+\dfrac{2}{3}-2-\dfrac{1}{2}\right)\)
\(=\dfrac{2+4^2}{15}:\left(2+\dfrac{2}{3}-\dfrac{1}{2}\right)\)
\(=\dfrac{18}{15}:\dfrac{13}{6}=\dfrac{6}{5}\cdot\dfrac{6}{13}=\dfrac{36}{65}\)
a)\(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\dfrac{1}{\sqrt{3}+5}\)
b)\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+3}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
a) Ta có: \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\dfrac{15\left(3+\sqrt{3}\right)}{6}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\dfrac{5}{2}+\dfrac{\sqrt{3}}{2}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\dfrac{1}{2}\)
b) Ta có: \(\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{100}+\sqrt{99}}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{99}+\sqrt{100}\)
=-1+10=9
BT1: Tính nhanh
1) \(\left(\dfrac{-4}{9}+\dfrac{3}{7}\right):1\dfrac{1}{15}+\left(\dfrac{4}{7}-\dfrac{5}{9}\right):1\dfrac{1}{15}\)
2) \(3\dfrac{2}{9}.15\dfrac{4}{7}-3\dfrac{2}{9}.8\dfrac{1}{7}+3\dfrac{2}{9}.\dfrac{15}{7}-3\dfrac{2}{9}.\dfrac{1}{7}\)
1: \(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}\right)+\dfrac{16}{15}\left(\dfrac{4}{7}-\dfrac{5}{9}\right)\)
\(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}+\dfrac{4}{7}-\dfrac{5}{9}\right)=0\)
2: \(=\dfrac{29}{9}\left(15+\dfrac{4}{7}-8-\dfrac{1}{7}+\dfrac{15}{7}-\dfrac{1}{7}\right)\)
\(=\dfrac{20}{9}\cdot\left(7\cdot\dfrac{18}{7}\right)=\dfrac{20}{9}\cdot18=40\)
Tìm x biết:
\(a,\dfrac{4}{5}+x=\dfrac{2}{3}\)
\(b,\dfrac{-5}{6}-x=\dfrac{2}{3}\)
\(c,\dfrac{1}{2}x+\dfrac{3}{4}=\dfrac{-3}{10}\)
\(d,\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\)
\(e,\dfrac{x+3}{15}=\dfrac{1}{3}\)
\(h,x+30\%x=-1,3\)
\(k,3\dfrac{1}{3}x+16\dfrac{1}{4}=13,25\)
\(m,\dfrac{x-6}{2}=\dfrac{50}{x-6}\)
\(n,x-13,4=24,5-6,7.5,2\)
\(p,15,7x+3,6x=-96,5\)
\(q,2,5x-11,6=-59,1\)
a)4/5+x=2/3
x=2/3-4/5
x=-2/15
b)-5/6-x=2/3
x=-5/6-2/3
x=-3/2
c)1/2x+3/4=-3/10
1/2x=-3/10-3/4
1/2x=-21/20
x=-21/20:1/2
x=-21/10
d)x/3-1/2=1/5
x/3=1/5+1/2
x/3=7/10
10x/30=21/30
10x=21
x=21:10
x=21/10