tìm x sao cho
12 chia hết chon x , 18 chia hết cho x và x lớn nhất
12 chia hết cho x ; 18 chia hết cho x và x lớn nhất
Đáp án:
x = 6
Giải thích các bước giải:
12⋮x
18⋮ x
x lớn nhất
⇒ x ∈ ƯCLN( 12; 18 )
+) ta có:
12 = 2² .3
18= 2 . 3²
⇒ƯCLN( 12; 18)= 2 . 3 = 6
⇒ x = 6
TÌM x BIẾT :
A)24CHIA HẾT CHO x ,18 CHIA HẾT CHO x(X LỚN HƠN HOẶC BẰNG 9)
B)12 CHIA HẾT CHO x ,20 CHIA HẾT CHOx (X LỚN HƠN HOẶC BẰNG 5)
C)24 CHIA HẾT CHO X ,36 CHIA HẾT CHO X , LỚN NHẤT
D)64 CHIA HẾT CHO X , 48 CHIA HẾT CHO X , 3 NHỎ HƠN HOẶC BẰNG X NHỎ HƠN HOẶC BẰNG 20
CÁC CHỮ SỐ MÌNH ĐÁNH TRÊN KIA LÀ VÌ BÀN PHÍM CỦA MIK KO CÓ KÍ TỰ ĐÓ
VẪN LÀM NHƯ BÌNH THỪNG NHÉ
A) 24 ⋮ x; 18 ⋮ x nên x ƯC(24; 18)
24 = 2³.3
18 = 2.3²
⇒ ƯCLN(24; 18) = 2.3 = 6
⇒ x ∈ ƯC(24; 18) = Ư(6) = {1; 2; 3; 6}
Mà x ≥ 9
⇒ Không tìm được x thỏa mãn yêu cầu
B) 12 ⋮ x; 20 ⋮ x nên x ∈ ƯC(12; 20)
12 = 2².3
20 = 2².5
⇒ ƯCLN(12; 20) = 2² = 4
⇒ x ∈ ƯC(12; 20) = Ư(4) = {1; 2; 4}
Mà x ≥ 5
⇒ Không tìm được x thỏa mãn yêu cầu
C) 24 ⋮ x; 36 ⋮ x và x lớn nhất
⇒ x = ƯCLN(24; 36)
24 = 2³.3
36 = 2².3²
⇒ x = ƯCLN(24; 36) = 2².3 = 12
D) 64 ⋮ x; 48 ⋮ x nên x ∈ ƯC(64; 48)
64 = 2⁶
48 = 2⁴.3
⇒ ƯCLN(64; 48) = 2⁴ = 16
⇒ x ∈ ƯC(64; 48) = Ư(16) = {1; 2; 4; 8; 16}
Mà 3 ≤ x 20
⇒ x ∈ {4; 8; 16}
x chia hết cho 36, x chia hết cho 90, x khác 0 x nhỏ nhất
x chia hết cho 12, x chia hết cho 25, x chia hết cho 30 và 0<x<500
12 chia hết cho x , 18 chia hết cho x, và x<5
480 chia hết cho x, 600 chia hết cho x , x lớn nhất
bạn k mk 3 cái rôì mk giải tiếp cho
a, ta có : x chia hết cho 36
=> x thuộc BC(36,90)
x chia hết cho 90
Vì x nhỏ nhất và x khác 0 => x = BCNN(36,90)
Mà 36= 2^2.3^2 90 = 2.3^2.5
=> BCNN(36,90)= 2^2.3^2.5= 180
=> BC(36,90)=B(180)=(0,180,360,...)
Vì x nhỏ nhất khác 0 =>x=180
câu 2
x chia hết cho 12
x chia hết cho 25
=> x thuộc BC(12 , 25)
12 = 2^2.3 ; 25 = 5^2
=> BCNN(12,25) = 2^2.3.5^2 = 300
B(300) = {0;300;600;....}
Vậy x = 300
Bài 1:
a, a chia hết cho 24, a chia hết cho 36, a chia hết cho 18 và 250<a<350
b, tìm số tự nhiên x, biết x chia hết cho 9, x chia hết cho 12 và 50<x<80
c, A = { x thuộc N / x chia hết cho 12, x chia hết cho 15, x chia hết cho 18 và 0<x<300 }
d, tìm số tự nhiên a lớn nhất, biết 240 chia hết cho a, 700 chia hết cho a
e, 144 chia hết cho x, 192 chia hết cho x và x>20
f, tìm số tự nhiên a, biết 126 chia hết cho a, 210 chia hết cho a và 15<a<30
g, tìm số tự nhiên a, biết 30 chia hết cho a và 45 chia hết cho a
Tìm số tự nhiên x biết:
a) 45 chia hết cho x
b)24 chia hết cho x, 36 chia hết cho x, 160 chia hết cho x và x lớn hơn
c)15 chia hết cho x; 20 chia hết cho x; 35 chia hết cho x và x lớn nhất
d) 36 chia hết cho x; 45 chia hết cho x; 18 chia hết cho x và x lớn nhất
2) Tìm x, biết: a) x chia hết cho 18 và x chia hết cho 36, x là số nhỏ nhất khác 0. b) 25 chia hết cho x và 45 chia hết cho x, x là số lớn nhất khác 0.
a: \(18=3^2\cdot2;36=3^2\cdot2^2\)
=>\(BCNN\left(18;36\right)=3^2\cdot2^2=36\)
\(x⋮18;x⋮36\)
=>\(x\in BC\left(18;36\right)\)
=>\(x\in B\left(36\right)\)
mà x là số nhỏ nhất khác 0
nên x=36
b: \(25=5^2;45=5\cdot3^2\)
=>\(ƯCLN\left(25;45\right)=5\)
\(25⋮x;45⋮x\)
=>\(x\inƯC\left(25;45\right)\)
mà x là số lớn nhất khác 0
nên x=ƯCLN(25;45)
=>x=5
tìm x biết :
a, x chia hết cho 12 ; x chia hết cho 21 ; x chia hết cho 28 và 150<x<300
b, x chia hết cho 12 ; x chia hết cho 15 ; x chia hết cho 18 và x<0<300
c, x chia hết cho 12 ; x chia hết cho 25 ; x chia hết cho 30 và 0<x<500
Tìm số tự nhiên x , biết :
a, 90 chia hết cho x
b, x chia hết cho 60 và 59 < x < 181
c, x là số nhỏ nhất khác 0 và x chia hết cho cả 12 và 18
a, 90 chia hết cho x => x ∈ Ư(90) = {1;2;3;5;6;9;10;15;18;30;45;90}
b, x chia hết cho 60 => x ∈ B(60) = {0;60;120;180;240;…} mà 59 < x < 180 => x ∈ {60;120;180}
c, x là số nhỏ nhất khác 0 và x chia hết cho cả 12 và 18 => x = BCNN(12;18)
12 = 2 2 . 3 ; 18 = 2 . 3 2 ; x = BCNN(12;18) = 2 2 . 3 2 = 4.9 = 36
Bài 3: Khi chia số tự nhiên a cho 36 ta được số dư 12. Hỏi a có chia hết cho 4 ; cho 9 không? Vì sao?
Bài 4: Tìm x, biết
a) x ∈ B(7) và x ≤ 35
b) x ∈ Ư(18) và 4 < x ≤ 10
Bài 5: Tìm x ∈ N sao cho:
a) 6 chia hết cho x
b) 8 chia hết cho x + 1
c) 10 chia hết cho x - 2
Bài 3:
a chia 36 dư 12 số đó có dạng \(a=36k+12\left(k\in N\right)\)
\(\Rightarrow a=4\left(9k+3\right)\) nên a chia hết cho 4
Mà: \(9k\) ⋮ 3 ⇒ \(9k+3\) không chia hết cho 3
Nên a không chia hết cho 3
Bài 4:
a) \(x\in B\left(7\right)\) \(\Rightarrow x\in\left\{0;7;14;21;28;35;42;49;...\right\}\)
Mà: \(x\le35\)
\(\Rightarrow x\in\left\{0;7;14;21;28;35\right\}\)
b) \(x\inƯ\left(18\right)\Rightarrow x\in\left\{1;2;3;6;9;18\right\}\)
Mà: \(4< x\le10\)
\(\Rightarrow x\in\left\{6;9\right\}\)
Bài 5:
a) 6 chia hết cho x
\(\Rightarrow x\inƯ\left(6\right)\)
\(\Rightarrow x\in\left\{1;2;3;6\right\}\)
b) \(8\) chia hết cho \(x+1\)
\(\Rightarrow x+1\inƯ\left(8\right)\)
\(\Rightarrow x+1\in\left\{1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{0;1;3;7\right\}\)
c) 10 chia hết cho \(x-2\)
\(\Rightarrow x-2\inƯ\left(10\right)\)
\(\Rightarrow x-2\in\left\{1;2;5;10\right\}\)
\(\Rightarrow x\in\left\{3;4;7;12\right\}\)