Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Mai Thị Thùy Trang
27 tháng 1 2019 lúc 15:57

BC=35cm

Chiyuki Fujito
9 tháng 2 2020 lúc 11:03

A B C

+) Ta có \(\left\{{}\begin{matrix}AB+AC=49\\AB-AC=7\end{matrix}\right.\) ( cm)

\(\Rightarrow\left\{{}\begin{matrix}AB+AC-AB+AC=49-7=42\\AB+AC+AB-AC=49+7=56\end{matrix}\right.\) ( cm)

\(\Rightarrow\left\{{}\begin{matrix}2AC=42\\2AB=56\end{matrix}\right.\) ( cm)

\(\Rightarrow\left\{{}\begin{matrix}AC=21\\AB=28\end{matrix}\right.\) (cm)

+) Xét \(\Delta ABC\) vuông tại A có

\(BC^2=AB^2+AC^2\) ( định lí Py-ta-go)

\(\Rightarrow BC^2=28^2+21^2\)

\(\Rightarrow BC^2=784+441\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=\sqrt{1225}=35\) ( do BC > 0) (cm)

Vậy BC = 35

@@ Học tốt @@
## Chiyuki Fujito

Khách vãng lai đã xóa
Capheny Bản Quyền
26 tháng 7 2021 lúc 17:24

AB là 

( 49 + 7 ) : 2 = 28 

AC là 

28 - 7 = 21 

Xét tam giác ABC vuông tại A 

AB^2 + AC^2 = BC^2 

21^2 + 28^2 = BC^2 

BC^2 = 1225 

BC = 35 

Khách vãng lai đã xóa
Thanh Nguyen
Xem chi tiết
Capheny Bản Quyền
26 tháng 7 2021 lúc 17:24

AB là 

( 49 + 7 ) : 2 = 28 

AC là 

28 - 7 = 21 

Xét tam giác ABC vuông tại A 

AB^2 + AC^2 = BC^2 

21^2 + 28^2 = BC^2 

BC^2 = 1225 

BC = 35 

Khách vãng lai đã xóa
Nguyễn Minh Quang
26 tháng 7 2021 lúc 17:32

ta có 

\(BC^2=AB^2+AC^2=\frac{\left(AC+AB\right)^2}{2}+\frac{\left(AC-AB\right)^2}{2}=\frac{49^2+7^2}{2}=1225\)

Vậy \(BC=\sqrt{1225}=35cm\)

Khách vãng lai đã xóa
01- Nguyễn Khánh An
Xem chi tiết
NGUYỄN♥️LINH.._.
21 tháng 3 2022 lúc 20:54

C

Mạnh=_=
21 tháng 3 2022 lúc 20:54

C

Kaito Kid
21 tháng 3 2022 lúc 20:55

C

Thị Huệ Trần
Xem chi tiết
~ ~ ~Bim~ ~ ~♌ Leo ♌~...
25 tháng 1 2019 lúc 21:52

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

~ ~ ~Bim~ ~ ~♌ Leo ♌~...
25 tháng 1 2019 lúc 22:06

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

~ ~ ~Bim~ ~ ~♌ Leo ♌~...
25 tháng 1 2019 lúc 22:15

Bài 3:

A B C H

Vì tam giác ABC cân tại A (gt) nên AB = AC

Mà AC = AH + HC

Hay AC= 8 + 3 = 11 (cm)

Nên AB = 11 (cm)

..........

( Phần này áp dụng định lý Py-ta-go vào tam giác và làm giống như bài 2 vậy nên mình không giải lại nữa nha bạn )  ( ^ o ^ )

Phạm Hà Chi
Xem chi tiết
Trịnh Thục Khuê
Xem chi tiết

b,Gọi I là giao điểm của BC và ED

Xét ∆AED và ∆ABC có:

+AB=AD(gt)

+\(\widehat{BAC}=\widehat{DAB}\left(=90^o\right)\)

+AC=AE(gt)

\(\Rightarrow\)∆AED=∆ABC(ch-cgv)

\(\Rightarrow\widehat{EDA}=\widehat{ABC}\) (2 góc tương ứng)

Mà \(\widehat{DEA}+\widehat{EDA}=90^o\)( do ∆ADE vuông tại A)

\(\Rightarrow\widehat{CBA}+\widehat{DEA}=90^o\)

\(\Rightarrow\)∆BIE vuông tại I

\(\Rightarrow DE\perp BC\)

Ngô Chí Thành
Xem chi tiết
Hồng Nhung 289
31 tháng 8 2016 lúc 14:23

từ AB+AC = 49 cm

và AB-AC = 7 cm 

=> AB = (49+7) :2 = 28 cm

=> AC = AB- 7 = 28 -7 = 21cm

mà tam giác ABC có góc A = 90 độ

=> tam giác ABC vuông tại A

=> AB\(^2\) + AC\(^2\) =BC\(^2\)   ( Định lí pi-ta-go)

<=>  BC\(^2\) = AB\(^2\) +AC\(^2\) = 28\(^2\) + 21\(^2\) =1225= 35\(^2\)

=> BC= 35 cm

          vậy BC= 35 cm

CHÚC BẠN HỌC TỐT

Hong Truong Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 19:57

Xét ΔABC có 

AC-AB<BC<AB+AC

\(\Leftrightarrow7-3< BC< 7+3\)

\(\Leftrightarrow4< BC< 10\)

\(\Leftrightarrow BC\in\left\{5;7\right\}\)

Shinichi Kudo
17 tháng 7 2021 lúc 20:04

Ta có: AC + AB > BC > AC - AB(bất đẳng thức tam giác)

         =>7 + 3 > BC > 7 - 3

            10 > BC > 4

Mà độ dài BC là số nguyên tố nên BC\(\in\)(5,7)

Với BC =5 thì \(\Delta ABC\) là tam giác thường

Với BC =7 thì \(\Delta ABC\)  là tam giác cân

 

Alan Becker
17 tháng 7 2021 lúc 20:07

Giải:

Xét ΔABC có:

AC-AB<BC<AB+AC

+7 − 3 < BC < 7 + 3 ⇔ 7 − 3 < BC < 7+3

+4 < BC < 10 ⇔ 4 < BC < 10

+BC ∈ {5;7}

bé thỏ cute
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 23:17

Bài 2: 

a: Đây là tam giác vuông

b: Đây ko là tam giác vuông