Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hồ Công Thành
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 23:07

a.

$7x-2y=5x-3y$

$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:

$-y+3y=20$

$2y=20$

$\Rightarrow y=10$. 

$x=\frac{-y}{2}=\frac{-10}{2}=-5$

 

Akai Haruma
30 tháng 4 2023 lúc 23:08

b.

$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$

$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$

$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$ 

 

Akai Haruma
30 tháng 4 2023 lúc 23:13

c.

$3x=4y-2x$

$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$

$3x=7z-4y$

$\Leftrightarrow \frac{12}{5}y=7z-4y$

$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$

Khi đó:

$x+y-2z=10$

$\frac{4}{5}y+y-2.\frac{32}{35}y=10$

$y.\frac{-1}{35}=10$

$y=-350$

$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$

$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$

A Nguyễn
Xem chi tiết
Nhan Tran
16 tháng 2 2022 lúc 19:54

Ai 2k9 ko

Nguyễn Thu Trang
Xem chi tiết
Nguyễn Huy Tú
14 tháng 3 2022 lúc 14:38

a, \(A=-x^2+4xy^2-2xz+3y^2\)

b, \(B=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)

c, \(A=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)

Cậu nhóc Vịt
Xem chi tiết
Lê Tài Bảo Châu
31 tháng 3 2019 lúc 23:02

Bạn xét tích thì nó ra dương thì tất nhiên có 1 biểu thức lớn hơn 0 rồi

Cậu nhóc Vịt
1 tháng 4 2019 lúc 19:47

Nói rõ hơn đi

ngochan123
Xem chi tiết
Elizabeth Scarlett
Xem chi tiết
Nguyễn Huy Hải
12 tháng 10 2015 lúc 18:20

khó + lười + nhiều = không làm

Lionel Messi
16 tháng 5 2019 lúc 11:21

Hello

Haquyminh
7 tháng 1 lúc 14:27

ko thích làm

 

Trần Hải Việt シ)
Xem chi tiết

a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)

\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)

\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)

Để H có bậc là 6 thì 6-A=0

=>A=6

b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)

\(=3x^4y^2+3x^2y^2\)

\(=3x^2y^2\left(x^2+1\right)\)

\(x^2+1>1>0\forall x\ne0\)

\(x^2>0\forall x\ne0\)

\(y^2>0\forall y\ne0\)

Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>H luôn dương khi x,y khác 0

Nguyễn Trúc Phương
Xem chi tiết
Tran Thu
Xem chi tiết

a; |2\(x\) - 4| + |3y + 21| = 0

   Vì |2\(x\) - 4| ≥ 0 ∀ \(x\); |3y + 21| ≥ 0 ∀ \(x\) 

     vậy |2\(x\) - 4| + |3y + 21| = 0

      ⇔ \(\left\{{}\begin{matrix}2x-4=0\\3y+21=0\end{matrix}\right.\)

      ⇔  \(\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)

Mai Trung Hải Phong
1 tháng 1 lúc 16:45

a)

\(\left|2x-4\right|+\left|3y+21\right|=0\)

Ta thấy:\(\left|2x-4\right|\ge0\forall x;\left|3y+21\right|\ge0\forall y\)

Để \(\left|2x-4\right|+\left|3y+21\right|=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-4=0\\3y+21=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=4\\3y=-21\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2;-7\right)\) b) \(\left|2x-12\right|+\left|3y+9\right|=-\left|x+y+z\right|\)  Vì \(\left|2x-12\right|\ge0;\left|3y+9\right|\ge0;-\left|x+y+z\right|\le0\) \(\Rightarrow\left[{}\begin{matrix}2x-12=0\\3y+9=0\\x+y+z=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\y=-3\\x+y+z=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\y=-3\\z=-3\end{matrix}\right.\) Vậy \(\left(x;y;z\right)=\left(6;-3;-3\right)\)    

b; |2\(x\) - 12| + |3y + 9| = - |\(x\) + y + z|

    |2\(x\) - 12| + |3y + 9| + |\(x\) + y + z| = 0

    Vì |2\(x\) - 12| ≥ 0; |3y + 9| ≥ 0; |\(x\) + y + z| ≥ 0

  ⇒      |2\(x\) - 12| + |3y + 9| + |\(x\) + y + z| = 0

 ⇔ \(\left\{{}\begin{matrix}2x-12=0\\3y+9=0\\x+y+z=0\end{matrix}\right.\) ⇔  \(\left\{{}\begin{matrix}x=6\\y=-3\\z=-3\end{matrix}\right.\)