Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn lâm cương
Xem chi tiết
Tuyển Trần Thị
22 tháng 7 2017 lúc 18:22

dkxd \(x\ge4\)

A=\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)

=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

th1 \(\sqrt{x-4}\ge2\Leftrightarrow x\ge8\)

ta co\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

th2 \(4\le x< 8\)

ta co \(\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

Trúc Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2020 lúc 18:09

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\left(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

\(=\sqrt{x}\)

b) Để P>4 thì \(\sqrt{x}>4\)

hay x>16

Kết hợp ĐKXĐ, ta được: x>16

Vậy: Khi x>16 thì P>4

Lê Quang Phat
13 tháng 12 2020 lúc 18:11

undefined

PTTD
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2021 lúc 21:48

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

b: Ta có: \(D=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+5}{x-4}\right)\cdot\dfrac{x-4}{\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-5\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{x-4}{\sqrt{x}}\)

\(=\dfrac{3\sqrt{x}-1}{\sqrt{x}}\)

Tranggg
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 22:52

1) ĐKXĐ: \(x\notin\left\{0;1\right\}\)

2) Ta có: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{x+\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)

\(=2\cdot\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

Nguyên
Xem chi tiết
Nguyễn Thái Thịnh
7 tháng 2 2022 lúc 14:07

a) \(\sqrt{3x-4}\) xác định \(\Leftrightarrow3x-4\ge0\Leftrightarrow3x\ge4\Leftrightarrow x\ge\dfrac{4}{3}\)

b) \(\dfrac{1}{\sqrt{x-4}}\) xác định \(\Leftrightarrow x-4>0\Leftrightarrow x>4\)

Nguyễn Huy Tú
7 tháng 2 2022 lúc 14:06

a, đkxđ : x >= 4/3 

b, đkxđ : x > 4 

Đỗ ĐứcAnh
Xem chi tiết
Chau Pham
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 7:39

\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 9:05

Ôn tập Căn bậc hai. Căn bậc ba

Trần Đăng Nhất
31 tháng 7 2017 lúc 18:46

Hỏi đáp Toán
Hỏi đáp Toán