Tìm tất cả các số tự nhiên k để cho số \(2^k+2^4+2^7\) là một số chính phương.
Tìm các số tự nhiên k để
2^k + 2^4 + 2^7 là số chính phương
Tìm các số tự nhiên k để
2^k + 2^4 + 2^7 là số chính phương
Với k \(\le4\) => không có k thỏa mãn
Với k > 4 : P = 2k + 24 + 27
= 24(2k - 4 + 23 + 1)
= 24(2k - 4 + 9)
= 16(2k - 4 + 9)
P chính phương <=> 2k - 4 + 9 chính phương
đặt 2k - 4 + 9 = y2 (y \(\inℕ\))
<=> 2k - 4 = (y - 3)(y + 3) (*)
Đặt \(\left\{{}\begin{matrix}y-3=2^m\\y+3=2^n\end{matrix}\right.\left(m;n\inℕ\right)\Leftrightarrow2^n-2^m=6\)
<=> 2m(2n - m - 1) = 6
<=> \(\left\{{}\begin{matrix}2^m=2\\2^{n-m}-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\n=3\end{matrix}\right.\)
khi đó phương trình (*) <=> k - 4 = m + n
<=> k - 4 = 1 + 3
<=> k = 8
Tìm các số tự nhiên k để cho 2k + 24 + 27 là một số chính phương
Đặt 2k + 24 + 27= a2 (a thuộc N) . Ta có:
\(2^k+2^4+2^7=a^2\)
\(\Leftrightarrow a^2-144=2^k\)
\(\Leftrightarrow\left(a+12\right)\left(a-12\right)=2^k\)
Vì a, k thuộc N nên
\(\hept{\begin{cases}a-12\ge1\\a+12\ge25\end{cases}\Leftrightarrow\left(a-12\right)\left(a+12\right)\ge25.1\Leftrightarrow2^k\ge25\Leftrightarrow k\ge5}\)
Chịu!!!!!!!
Cao thủ nào giải giúp với ạ!!!!!!!!!!!!
làm giống Nguyễn Huệ Lam đến (a+12)(a-12)=2k nha
tiếp
đặt a+12=2m a-12=2n m>n, m+n=k
2m -2n =a+12-a+12=24
2m-2n = 8*3
suy ra 2n(2m-n-1)=23*3
suy ra n=3
2m-n-1=3
\(\Leftrightarrow\)m-n=2
m=n+2
m=5
k=8
Nếu có số tự nhiên k sao cho k =n^2 thì ta nói k là số chính phương .Tìm tất cả các số ab sao cho (ab+ba) là số chính phương .
- HELP ME ^-^ -
Tìm các số tự nhiên k để cho số 2k + 24 + 27 là một số chính phương
Tìm các số nguyên x sao cho A = x(x-1)(x-7)(x-8) là một số chính phương
Cho A = p4 trong đó p là một số nguyên tố
a. Số A có những ước dương nào ?
b. Tìm các giá trị của p để tổng các ước dương của A là một số chính phương
a) Tìm tất cả các số tự nhiên \(k\) sao cho \(2k+1\) và \(4k+1\) đều là các số chính phương.
b) Với mỗi số tự nhiên \(k\) thỏa mãn đề bài, chứng minh rằng \(35|k^2-12k\)
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
1. Chứng minh rằng nếu các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) − 2y là số chính phương thì x = y.
2. Tìm các số nguyên dương n để n4 + 2n3 + 3n3 + 3n + 7 là số chính phương.
3. Tìm các số tự nhiên m,n thỏa mãn 2m + 3 = n2.
4. Tìm các số tự nhiên n để n2 + n + 2 là tích của k số nguyên dương liên tiếp với k ≥ 2.
5. Tìm các số tự nhiên n để 36n − 6 là tích của k số nguyên dương liên tiếp với k ≥ 2.
6. Tìm số tự nhiên n lớn nhất để 427 +4500 +4n là số chính phương.
7. Tìm các số nguyên tố p để 2p - 1 - 1 / p là số chính phương
Bài 1: a,Tìm số chính phương có 6 chữ số 2007ab
b,Tìm các số tự nhiên k để 2k+24+27 là số chính phương.