Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Yến Nhi
Xem chi tiết
Trần Tuyết Như
20 tháng 4 2015 lúc 13:37

ta có:   L = \(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+...+\frac{403}{3^{100}}\)

<=> \(3L=7+\frac{11}{3}+\frac{15}{3^2} +..+\frac{403}{3^{99}}\)

=> \(3L-L=\left(7+\frac{11}{3}+\frac{15}{3^2}+...+\frac{403}{3^{99}}\right)-\left(\frac{7}{3}+\frac{11}{3^2}+...+\frac{403}{3^{100}}\right)\)

<=> \(2L=7+\left(\frac{11}{3}-\frac{7}{3}\right)+\left(\frac{15}{3^2}-\frac{11}{3^2}\right)+...+\left(\frac{403}{3 ^{99}}-\frac{399}{3^{99}}\right)-\frac{403}{3^{100}}\)

<=> \(2L=7+4\cdot\frac{1}{3}+4\cdot\frac{1}{3^2}+..+4\cdot\frac{1}{3^{99}}-\frac{403}{3^{100}}\)

<=> \(2L=7+4\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\frac{403}{3^{100}}\)

<=>\(2L=7+4\left[\frac{1}{2}\cdot\left(1-\frac{1}{3^{99}}\right)\right]-\frac{403}{3^{100}}\)

<=> \(2L=7+2-\frac{2}{3^{99}}-\frac{403}{3^{100}}\)

<=> \(L=3,5+1-\frac{1}{3^{99}}-\frac{403}{2\cdot3^{100}}\)

<=> \(L=4,5-\frac{1}{3^{99}}-\frac{403}{2\cdot3^{100}}

ANYWAY
Xem chi tiết
Ngưu Kim
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
4 tháng 8 2019 lúc 21:51
hoang gia kieu
Xem chi tiết
Lê Tài Bảo Châu
27 tháng 7 2019 lúc 11:08

a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)

\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)

Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)

\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)

\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)

\(\Rightarrow F< \frac{3}{2}\)

\(\Rightarrow2A< 4+\frac{3}{2}\)

\(\Rightarrow2A< \frac{11}{2}\)

\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)

Lê Tài Bảo Châu
27 tháng 7 2019 lúc 11:19

2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)

\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)

\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)

\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)

Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)

\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)

\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )

\(\Rightarrow2D< 6\)

\(\Rightarrow D< 3\)

\(\Rightarrow2B< 11+3\)

\(\Rightarrow2B< 14\)

\(\Rightarrow B< 7\left(đpcm\right)\)

Lê Tài Bảo Châu
27 tháng 7 2019 lúc 11:20

Phần cuối cũng tương tự 2 phần mình vừa làm nhé

Bạn tự làm nốt nhé đánh mệt lắm

nguyễn thị kim oanh
Xem chi tiết
nguyễn thị kim oanh
29 tháng 3 2019 lúc 8:38

làm ơn

Nguyễn Thảo An
Xem chi tiết
Cô Bé Yêu Đời
Xem chi tiết
lê phúc
3 tháng 9 2019 lúc 19:53

lolang

Mai Anh Tào Nguyễn
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
26 tháng 6 2019 lúc 17:31
Xem chi tiết

\(\frac{1}{3}L=\frac{5}{3^2}+\frac{8}{3^3}+...+\frac{302}{3^{102}}\)

\(\Rightarrow\frac{2}{3}L=\frac{5}{3}+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\right)-\frac{302}{3^{102}}\)

Đặt \(A=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\right)\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{102}}\)

\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{102}}=\frac{3^{101}-1}{3^{102}}\)

\(\Rightarrow A=\frac{3^{101}-1}{3^{101}.2}\)

do đó \(\frac{2}{3}L=\frac{5}{3}-\frac{302}{3^{102}}+\frac{3^{101}-1}{3^{101}.2}\)

\(=\frac{10.3^{101}-302.2+3\left(3^{101}-1\right)}{2.3^{102}}=\frac{19.3^{101}-607}{2.3^{102}}\)

\(\Rightarrow L=\frac{19.3^{101}-607}{4.3^{101}}\)

Khách vãng lai đã xóa

đến đó chứng minh dễ rồi đúng k??? :P

Khách vãng lai đã xóa