Cho \(L=\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+...+\frac{403}{3^{100}}.\)
Chứng minh \(L
Cho: \(L=\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+...+\frac{403}{3^{100}}\)
Chứng minh rằng L< 4,5
ta có: L = \(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+...+\frac{403}{3^{100}}\)
<=> \(3L=7+\frac{11}{3}+\frac{15}{3^2} +..+\frac{403}{3^{99}}\)
=> \(3L-L=\left(7+\frac{11}{3}+\frac{15}{3^2}+...+\frac{403}{3^{99}}\right)-\left(\frac{7}{3}+\frac{11}{3^2}+...+\frac{403}{3^{100}}\right)\)
<=> \(2L=7+\left(\frac{11}{3}-\frac{7}{3}\right)+\left(\frac{15}{3^2}-\frac{11}{3^2}\right)+...+\left(\frac{403}{3 ^{99}}-\frac{399}{3^{99}}\right)-\frac{403}{3^{100}}\)
<=> \(2L=7+4\cdot\frac{1}{3}+4\cdot\frac{1}{3^2}+..+4\cdot\frac{1}{3^{99}}-\frac{403}{3^{100}}\)
<=> \(2L=7+4\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\frac{403}{3^{100}}\)
<=>\(2L=7+4\left[\frac{1}{2}\cdot\left(1-\frac{1}{3^{99}}\right)\right]-\frac{403}{3^{100}}\)
<=> \(2L=7+2-\frac{2}{3^{99}}-\frac{403}{3^{100}}\)
<=> \(L=3,5+1-\frac{1}{3^{99}}-\frac{403}{2\cdot3^{100}}\)
<=> \(L=4,5-\frac{1}{3^{99}}-\frac{403}{2\cdot3^{100}}
Rút gọn :
\(A=\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+....+\frac{403}{3^{100}}< \frac{17}{4}\)
a) Cho \(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+\frac{1}{60}\)
Chứng minh \(\frac{3}{5}< S< \frac{4}{5}\)
b) Chứng minh \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+......+\frac{1}{100}>\frac{7}{10}\)
c) Chứng minh \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không là số tự nhiên d) Chứng minh \(\frac{1}{15}< D< \frac{1}{10}với\) \(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)Bạn tham khảo ở link này nhé :
1. cho A = \(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)chứng minh: A< \(\frac{11}{4}\)
2. cho B = \(\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)chứng minh: B<7
3. cho C = \(\frac{4}{3}+\frac{13}{3^2}+\frac{22}{3^3}+...+\frac{904}{3^{101}}\)chứng minh: C<\(\frac{17}{4}\)
a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)
\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)
Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)
\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)
\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)
\(\Rightarrow F< \frac{3}{2}\)
\(\Rightarrow2A< 4+\frac{3}{2}\)
\(\Rightarrow2A< \frac{11}{2}\)
\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)
2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)
\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)
\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)
\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)
Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)
\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)
\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )
\(\Rightarrow2D< 6\)
\(\Rightarrow D< 3\)
\(\Rightarrow2B< 11+3\)
\(\Rightarrow2B< 14\)
\(\Rightarrow B< 7\left(đpcm\right)\)
Phần cuối cũng tương tự 2 phần mình vừa làm nhé
Bạn tự làm nốt nhé đánh mệt lắm
Cho G=\(\frac{5}{3}+\frac{8}{3^2}+\frac{11}{3^3}+...+\frac{302}{3^{100}}\)
Chứng minh rằng 11/3<G<7/2
Cho A=\(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+...\frac{2019}{3^{504}}\)
Chứng minh rằng A<9/2
Chứng minh :
a) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
b)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}< \frac{7}{12}\)
c) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh \(1< S< 2\)
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
cho L=\(\frac{5}{3}+\frac{8}{3^2}+\frac{11}{3^3}+...+\frac{302}{3^{101}}\) chứng minh L >\(2\frac{5}{9}\)
nhanh nha làm đúng thì mình tick cho
\(\frac{1}{3}L=\frac{5}{3^2}+\frac{8}{3^3}+...+\frac{302}{3^{102}}\)
\(\Rightarrow\frac{2}{3}L=\frac{5}{3}+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\right)-\frac{302}{3^{102}}\)
Đặt \(A=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\right)\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{102}}\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{102}}=\frac{3^{101}-1}{3^{102}}\)
\(\Rightarrow A=\frac{3^{101}-1}{3^{101}.2}\)
do đó \(\frac{2}{3}L=\frac{5}{3}-\frac{302}{3^{102}}+\frac{3^{101}-1}{3^{101}.2}\)
\(=\frac{10.3^{101}-302.2+3\left(3^{101}-1\right)}{2.3^{102}}=\frac{19.3^{101}-607}{2.3^{102}}\)
\(\Rightarrow L=\frac{19.3^{101}-607}{4.3^{101}}\)
đến đó chứng minh dễ rồi đúng k??? :P