\(C=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-0.9}{\frac{7}{91}+0.2-\frac{3}{10}}\)
Tính giá trị của các biểu thức sau: \(A=\frac{\frac{2}{39}-\frac{1}{15}-\frac{2}{153}}{\frac{1}{34}+\frac{3}{20}-\frac{3}{26}}:\frac{1+\frac{2}{71}-\frac{5}{121}}{\frac{65}{121}-\frac{26}{71}-13}\) \(B=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{27}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-0.9}{\frac{7}{91}+0.2-\frac{3}{10}}\) \(C=\left(\frac{0.4-\frac{2}{9}+\frac{2}{11}}{1.4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0.25+\frac{1}{5}}{1\frac{1}{6}-0.875+0.7}\right):\frac{2014}{2015}\)
chứng minh rằng:
a) A= \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)<1
b)B=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Tính nhanh
a) \(A=\frac{1}{3}-\frac{3}{4}-\left(\frac{3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
b) \(B=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{11}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}\)
c)\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
1, Thực hiện phép tính'
\(A=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-0,9}{\frac{7}{91}+0,2-\frac{3}{10}}\)
\(B=\frac{30.4^7.3^{29}-5.14^5.2^{12}}{54.6^{14}.9^7-12.8^5.7^5}\)
tính nhanh :
\(A=\frac{15^3+5\times15^2-5^3}{18^3+6\times18^2-6^3}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2015}}\)
\(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\) \(D=\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
\(F=\left(100-1^2\right)\left(100-2^2\right)....\left(100-25^2\right)\)
\(A=\frac{1}{3}-\frac{3}{4}-\left(-\frac{3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)\(\frac{1}{15}\)
\(B=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{11}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}\)
Cho biểu thức \(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
Chứng minh rằng \(C< \frac{3}{16}\)