Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bá Hùng
Xem chi tiết
lê duy mạnh
15 tháng 10 2019 lúc 21:30

max=căn 66

áp dụng bất đẳng thức cô si là ra 

tích cho nha

Lê Tài Bảo Châu
15 tháng 10 2019 lúc 21:33

Áp dụng bđt côsi ta có: 

\(\hept{\begin{cases}\sqrt{\left(x+y\right)4}\le\frac{x+y+4}{2}\left(1\right)\\\sqrt{\left(z+y\right)4}\le\frac{y+z+4}{2}\left(2\right)\\\sqrt{\left(z+x\right)4}\le\frac{z+x+4}{2}\left(3\right)\end{cases}}\)

Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:

\(2P\le x+y+z+6=12\)

\(\Leftrightarrow p\le6\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=2\)

Vậy \(P_{max}=6\)\(\Leftrightarrow x=y=z=2\)

tth_new
16 tháng 10 2019 lúc 16:29

Phần Min anh sử dụng cách tương tự như:Câu hỏi của tth_new - Toán lớp 1 (em ko chắc đâu nhưng chắc là đúng:D) . Cách khác em chưa nghĩ ra:P

Raz0102
Xem chi tiết
Yeutoanhoc
1 tháng 3 2021 lúc 14:12

`0<=y,z<=1`

`=>1-y,1-z>=0`

`=>(1-y)(1-z)>=0`

`=>1-y-z+yz>=0`

`=>yz>=y+z-1`

`=>2yz>=2x+2z-2`

`=>P=x^2+y^2+z^2`

`=>P=x^2+(y^2+2yz+z^2)-2yz`

`=>P=x^2+(y+z)^2-2yz`

`=>P<=x^2-2(y+z-1)+(3/2-x)^2`

`=>P<=(3/2-x)^2-2(1/2-x)+x^2`

`=>P<=9/4-3x+x^2-1+2x+x^2`

`=>P<=5/4+2x^2-x`

Giả sử:

`x<=y<=z`

`=>x+x+x<=x+y+z=3/2`

`=>3x<=3/2`

`=>x<=1/2`

`0<=x<=1/2=>2x^2-x<=0`

`=>P<=5/4`

Dấu "=" xảy ra khi `(x,y,z)=(0,1,1/2)` và các hoán vị

Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 22:13

Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x,y,z\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2+x^2+y^2+z^2\ge x^2+y^2+z^2+2xy+2yz+2xz\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge\dfrac{9}{4}:3=\dfrac{9}{4}\cdot\dfrac{1}{3}=\dfrac{3}{4}\)

Dấu '=' xảy ra khi \(x=y=z=\dfrac{1}{4}\)

Vậy: \(P_{max}=\dfrac{3}{4}\) khi \(x=y=z=\dfrac{1}{4}\)

Yeutoanhoc
28 tháng 2 2021 lúc 22:23

`0<=y,z<=1`

`=>1-y,1-z>=0`

`=>(1-y)(1-z)>=0`

`=>1-y-z+yz>=0`

`=>yz>=y+z-1`

`=>2yz>=2x+2z-2`

`=>P=x^2+y^2+z^2`

`=>P=x^2+(y^2+2yz+z^2)-2yz`

`=>P=x^2+(y+z)^2-2yz`

`=>P<=x^2-2(y+z-1)+(3/2-x)^2`

`=>P<=(3/2-x)^2-2(1/2-x)+x^2`

`=>P<=9/4-3x+x^2-1+2x+x^2`

`=>P<=5/4+2x^2-x`

Giả sử:

`x<=y<=z`

`=>x+x+x<=x+y+z=3/2`

`=>3x<=3/2`

`=>x<=1/2`

`0<=x<=1/2=>2x^2-x<=0`

`=>P<=5/4`

Dấu "=" xảy ra khi `(x,y,z)=(0,1,1/2)` và các hoán vị

Lê Thành Phúc
Xem chi tiết
aaaaaaaa
Xem chi tiết
Nguyễn Hưng Phát
28 tháng 10 2018 lúc 18:43

\(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{x}{2x}+\frac{y}{2y}+\frac{z}{2z}=\frac{3}{2}\)

Nên max M là \(\frac{3}{2}\) khi x=y=z=1

\(x+y+z=3\ge x,y,z\)\(\Rightarrow M\ge\frac{x}{10}+\frac{y}{10}+\frac{z}{10}=\frac{3}{10}\)

Nên min M là \(\frac{3}{10}\) khi trong x,y,z có 2 số bằng 0 và 1 số bằng 3

tống thị quỳnh
Xem chi tiết
CHU ANH TUẤN
11 tháng 9 2017 lúc 20:21

9 = 22 + 22 +12  

suy ra x ; y ; z = 2 ; 2 và 1

Bùi Đức Thắng
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
tth_new
19 tháng 4 2020 lúc 7:26

Ta chứng minh \(P\ge\frac{25}{64}\). Thật vậy:

Đặt \(p=x+y+z=\frac{3}{2},q=ab+bc+ca,r=abc\)

Cần chứng minh: 

Dễ thấy khi r giảm thì f(r) giảm. Mà theo Schur: -3/8 + (2*q)/3=-1/9*p^3 + 4/9*q*p <= r 

Nên \(f\left(r\right)\ge f\left(\frac{2q}{3}-\frac{3}{8}\right)=\frac{\left(4q-3\right)\left(q-6\right)}{9}\ge0\)

Done.

Khách vãng lai đã xóa
tth_new
19 tháng 4 2020 lúc 7:59

Bunyakovski hả?

Có: \(\left(x^3+y^3+z^3\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}=\frac{2\left(x^2+y^2+z^2\right)^2}{3}\)

Cần chứng minh: \(\frac{2\left(x^2+y^2+z^2\right)^2}{3}+x^2y^2z^2\ge\frac{25}{64}\)

Or \(\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}+\left(x^2y^2z^2+\frac{1}{64}\right)\ge\frac{13}{32}\)

Or: \(\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}+\frac{1}{4}xyz\ge\frac{13}{32}=\frac{13}{108}\left(x+y+z\right)^3\)(*)

 (1)

Điều thú vị là BĐT (*) đúng với mọi x,y,z thuộc R thỏa mãn x + y + z \(\ge0\) (nhờ đẳng thức (1) ). 

Mà điều này luôn đúng do điều kiện...

Khách vãng lai đã xóa
tth_new
19 tháng 4 2020 lúc 10:43

Có thể xem bất đẳng thức chặt hơn: \(\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}+\frac{1}{4}xyz\ge\frac{13}{108}\left(x+y+z\right)^3\) (ở lời giải 2)

Tại đây.

Khách vãng lai đã xóa
nguyễn thùy linh
Xem chi tiết
Thắng Nguyễn
17 tháng 2 2017 lúc 23:01

đề đúng ko v

nguyễn thùy linh
17 tháng 2 2017 lúc 23:10

đúng đó bạn ạ

nguyễn thùy linh
17 tháng 2 2017 lúc 23:12

úi lộn k phải 3mà là 3x^2

Thắng Nguyễn
Xem chi tiết