Cho tứ giác ABCD ( \(\widehat{A}=\widehat{C}=\)900). AC\(\cap\)BD=O
Chứng minh: OA.OC=OB.OD
Cho tứ giác ABCD có AB= BC; CD = DA
a) Chứng minh BD là đường trung trức của AC
b) Cho \(\widehat{B}\) = 100 độ, \(\widehat{D}\)= 80 độ. Tính \(\widehat{A}\) và \(\widehat{C}\)
a) Ta có : AB=BC và CD=DA (đề bài)
⇒ BD là đường trung trực của AC
b) Ta có : AB=BC (đề bài)
⇒ Δ ABC cân tại B
⇒ Góc BAC = Góc BCA
Tương tự ta chứng minh Góc DAC = Góc DCA (CD=AD...)
mà Góc A = Góc BAC + Góc DAC
Góc C = Góc BCA+ Góc DCA
⇒ Góc A = Góc C
mà A + B + C +D =360; B=100o ; D=80o
⇒ A + C =360 - (100 + 80) = 240
⇒ A = C = 240 : 2 = 120o
Cho hình thang ABCD AB song song CD từ B và D lần lượt BM vuông góc AC và BD vuông góc AC chứng minh rằng tam giác ABM đồng dạng tam giác CDN minh rằng OA.OC=OB.OD Gọi E là trung điểm của AB ,F là trung điểm của CD Chứng minh O E F thẳng hàng
Cho tứ giác ABCD, gọi O là giao điểm hai đường chéo và I là giao điểm hai cạnh bên AD và BC. Chứng minh rằng:
a) Tứ giác ABCD nội tiếp khi và chỉ khi OA.OC = OB.OD
b) Tứ giác ABCD nội tiếp khi và chỉ khi IA. ID = IB. IC
bài này em ko bt em mới học lp 6 thôi
Cho tứ giác ABCD, gọi O là giao điểm hai đường chéo và I là giao điểm hai cạnh bên AD và BC. Chứng minh rằng:
a) Tứ giác ABCD nội tiếp khi và chỉ khi OA.OC = OB.OD
b) Tứ giác ABCD nội tiếp khi và chỉ khi IA. ID = IB. IC
Tứ giác ABCD có : \(\widehat{A}=\widehat{B}\), BC=AD
a) Chứng minh rằng ABCD là hình thang cân
b) Cho biết : AC ⊥ BD và đường cao AI= 4cm. Tính AB+CD
a) Xét ΔBAD và ΔABC có
AB chung
\(\widehat{BAD}=\widehat{ABC}\)(gt)
AD=BC(gt)
Do đó: ΔBAD=ΔABC(c-g-c)
Suy ra: BD=AC(hai cạnh tương ứng)
Xét ΔADC và ΔBCD có
AD=BC(gt)
AC=BD(cmt)
DC chung
Do đó: ΔADC=ΔBCD(c-c-c)
Suy ra: \(\widehat{ADC}=\widehat{BCD}\)(hai góc tương ứng)
Xét tứ giác ABCD có
\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)(Định lí tổng bốn góc trong một tứ giác)
\(\Leftrightarrow2\cdot\widehat{BAD}+2\cdot\widehat{ADC}=360^0\)
\(\Leftrightarrow\widehat{BAD}+\widehat{ADC}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
Xét tứ giác ABCD có AB//CD(cmt)
nên ABCD là hình thang(Định nghĩa hình thang)
Hình thang ABCD(AB//CD) có AC=BD(cmt)
nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)
cho tam giác ECD . Trên cạnh ED,EC lần lượt lấy các điểm A,B sao cho góc EAB = góc ECD . Gọi O là giao điểm của AC,BD.
a, chứng minh tam giác EAC đồng dạng với tam giác ECD
b, chứng minh tam giác EAC đồng dạng với tam giác EBD
c, CM: OA.OC=OB.OD
Cho tứ giác ABCD. Biết \(\widehat{B}+\widehat{D}=180^o\) và \(AB=BC\).
Chứng minh rằng \(AC\) là tia phân giác góc \(A\).
Cho tứ giác ABCD có \(\widehat{A}+\widehat{C}=60\) và AB*CD=AD*BC. Chứng minh: AB*CD=AC*BD
Tứ giác ABCD có \(\widehat{B}=\widehat{D}=90^0\)
a) Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn
b) So sánh độ dàu AC và BD. Nếu AC = BD thì tứ giác ABCD là hình gì ?